Sorry, you need to enable JavaScript to visit this website.

CV and Metabolic Disorders

CV and Metabolic Disorders
Therapies for patients with a range of chronic heart and metabolic diseases.

CV and Metabolic Disorders Medications

Please select a product from the list to view its approved indications as well as the link to its full prescribing information. The list is not an all-inclusive list of Pfizer medications in a therapeutic area and inclusion of a product within this list should not suggest it is approved for a broad therapeutic area. Please refer to each medication’s individual prescribing information for specific details.

ACCUPRIL® (quinapril HCl)

These highlights do not include all the information needed to use ACCUPRIL safety and effectively. See full prescribing information for ACCUPRIL.

WARNING: FETAL TOXICITY

  • When pregnancy is detected, discontinue ACCUPRIL as soon as possible.
  • Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. See Warnings: Fetal Toxicity

CONTRAINDICATIONS

ACCUPRIL is contraindicated in patients who are hypersensitive to this product and in patients with a history of angioedema related to previous treatment with an ACE inhibitor.

Do not co-administer ACCUPRIL with aliskiren in patients with diabetes.

WARNINGS

Anaphylactoid and Possibly Related Reactions

Presumably because ACE inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors (including ACCUPRIL) may be subject to a variety of adverse reactions, some of them serious.

Head and Neck Angioedema

Angioedema of the face, extremities, lips, tongue, glottis, and larynx has been reported in patients treated with ACE inhibitors and has been seen in 0.1% of patients receiving ACCUPRIL.

In two similarly sized U.S. postmarketing trials that, combined, enrolled over 3,000 black patients and over 19,000 non-blacks, angioedema was reported in 0.30% and 0.55% of blacks (in study 1 and 2 respectively) and 0.39% and 0.17% of non-blacks.

Angioedema associated with laryngeal edema can be fatal. If laryngeal stridor or angioedema of the face, tongue, or glottis occurs, treatment with ACCUPRIL should be discontinued immediately, the patient treated in accordance with accepted medical care, and carefully observed until the swelling disappears. In instances where swelling is confined to the face and lips, the condition generally resolves without treatment; antihistamines may be useful in relieving symptoms. Where there is involvement of the tongue, glottis, or larynx likely to cause airway obstruction, emergency therapy including, but not limited to, subcutaneous epinephrine solution 1:1000 (0.3 to 0.5 mL) should be promptly administered (see ADVERSE REACTIONS).

Patients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.

Intestinal Angioedema

Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.

Patients with a history of angioedema

Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor (see also CONTRAINDICATIONS).

Anaphylactoid reactions during desensitization

Two patients undergoing desensitizing treatment with hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent rechallenge.

Anaphylactoid reactions during membrane exposure

Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.

Hepatic Failure

Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and (sometimes) death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE inhibitor and receive appropriate medical follow-up.

Hypotension

Excessive hypotension is rare in patients with uncomplicated hypertension treated with ACCUPRIL alone. Patients with heart failure given ACCUPRIL commonly have some reduction in blood pressure, but discontinuation of therapy because of continuing symptomatic hypotension usually is not necessary when dosing instructions are followed. Caution should be observed when initiating therapy in patients with heart failure (see DOSAGE AND ADMINISTRATION). In controlled studies, syncope was observed in 0.4% of patients (N=3203); this incidence was similar to that observed for captopril (1%) and enalapril (0.8%).

Patients at risk of excessive hypotension, sometimes associated with oliguria and/or progressive azotemia, and rarely with acute renal failure and/or death, include patients with the following conditions or characteristics: heart failure, hyponatremia, high dose diuretic therapy, recent intensive diuresis or increase in diuretic dose, renal dialysis, or severe volume and/or salt depletion of any etiology. It may be advisable to eliminate the diuretic (except in patients with heart failure), reduce the diuretic dose or cautiously increase salt intake (except in patients with heart failure) before initiating therapy with ACCUPRIL in patients at risk for excessive hypotension who are able to tolerate such adjustments.

In patients at risk of excessive hypotension, therapy with ACCUPRIL should be started under close medical supervision. Such patients should be followed closely for the first two weeks of treatment and whenever the dose of ACCUPRIL and/or diuretic is increased. Similar considerations may apply to patients with ischemic heart or cerebrovascular disease in whom an excessive fall in blood pressure could result in a myocardial infarction or a cerebrovascular accident.

If excessive hypotension occurs, the patient should be placed in the supine position and, if necessary, receive an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further doses of ACCUPRIL, which usually can be given without difficulty once the blood pressure has stabilized. If symptomatic hypotension develops, a dose reduction or discontinuation of ACCUPRIL or concomitant diuretic may be necessary.

Neutropenia/Agranulocytosis

Another ACE inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression rarely in patients with uncomplicated hypertension, but more frequently in patients with renal impairment, especially if they also have a collagen vascular disease, such as systemic lupus erythematosus or scleroderma. Agranulocytosis did occur during ACCUPRIL treatment in one patient with a history of neutropenia during previous captopril therapy. Available data from clinical trials of ACCUPRIL are insufficient to show that, in patients without prior reactions to other ACE inhibitors, ACCUPRIL does not cause agranulocytosis at similar rates. As with other ACE inhibitors, periodic monitoring of white blood cell counts in patients with collagen vascular disease and/or renal disease should be considered.

Fetal Toxicity

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue ACCUPRIL as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.

In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue ACCUPRIL, unless it is considered life-saving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to ACCUPRIL for hypotension, oliguria, and hyperkalemia (see PRECAUTIONS, Pediatric Use). No teratogenic effects of ACCUPRIL were seen in studies of pregnant rats and rabbits. On a mg/kg basis, the doses used were up to 180 times (in rats) and one time (in rabbits) the maximum recommended human dose.


PRECAUTIONS

General

Impaired renal function

As a consequence of inhibiting the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals. In patients with severe heart failure whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with ACE inhibitors, including ACCUPRIL, may be associated with oliguria and/or progressive azotemia and rarely acute renal failure and/or death.

In clinical studies in hypertensive patients with unilateral or bilateral renal artery stenosis, increases in blood urea nitrogen and serum creatinine have been observed in some patients following ACE inhibitor therapy. These increases were almost always reversible upon discontinuation of the ACE inhibitor and/or diuretic therapy. In such patients, renal function should be monitored during the first few weeks of therapy.

Some patients with hypertension or heart failure with no apparent preexisting renal vascular disease have developed increases in blood urea and serum creatinine, usually minor and transient, especially when ACCUPRIL has been given concomitantly with a diuretic. This is more likely to occur in patients with preexisting renal impairment. Dosage reduction and/or discontinuation of any diuretic and/or ACCUPRIL may be required.

Evaluation of patients with hypertension or heart failure should always include assessment of renal function (see DOSAGE AND ADMINISTRATION).

Hyperkalemia

In clinical trials, hyperkalemia (serum potassium ≥5.8 mmol/L) occurred in approximately 2% of patients receiving ACCUPRIL. In most cases, elevated serum potassium levels were isolated values which resolved despite continued therapy. Less than 0.1% of patients discontinued therapy due to hyperkalemia. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of other drugs that raise serum potassium levels. Monitor serum potassium in such patients (see PRECAUTIONS, Drug Interactions).

Cough

Presumably due to the inhibition of the degradation of endogenous bradykinin, persistent non-productive cough has been reported with all ACE inhibitors, always resolving after discontinuation of therapy. ACE inhibitor-induced cough should be considered in the differential diagnosis of cough.

Surgery/anesthesia

In patients undergoing major surgery or during anesthesia with agents that produce hypotension, ACCUPRIL will block angiotensin II formation secondary to compensatory renin release. If hypotension occurs and is considered to be due to this mechanism, it can be corrected by volume expansion.

Information for Patients

Pregnancy

Tell female patients of childbearing age about the consequences of exposure to ACCUPRIL during pregnancy. Discuss treatment options with women planning to become pregnant. Ask patients to report pregnancies to their physicians as soon as possible.

Angioedema

Angioedema, including laryngeal edema can occur with treatment with ACE inhibitors, especially following the first dose. Advise patients and tell them to immediately report any signs or symptoms suggesting angioedema (swelling of face, extremities, eyes, lips, tongue, difficulty in swallowing or breathing) and to stop taking the drug until they have consulted with their physician (see WARNINGS).

Symptomatic hypotension

Caution patients that lightheadedness can occur, especially during the first few days of ACCUPRIL therapy, and that it should be reported to a physician. If actual syncope occurs, tell patients to temporarily discontinue the drug until they have consulted with their physician (see WARNINGS).

Caution all patients that inadequate fluid intake or excessive perspiration, diarrhea, or vomiting can lead to an excessive fall in blood pressure because of reduction in fluid volume, with the same consequences of lightheadedness and possible syncope.

Tell patients planning to undergo any surgery and/or anesthesia to inform their physician that they are taking an ACE inhibitor.

Hyperkalemia

Tell patients not to use potassium supplements or salt substitutes containing potassium without consulting their physician (see PRECAUTIONS).

Neutropenia

Tell patients to promptly report any indication of infection (eg, sore throat, fever) which could be a sign of neutropenia.

NOTE: As with many other drugs, certain advice to patients being treated with ACCUPRIL is warranted. This information is intended to aid in the safe and effective use of this medication. It is not a disclosure of all possible adverse or intended effects.

Drug Interactions

Concomitant diuretic therapy

As with other ACE inhibitors, patients on diuretics, especially those on recently instituted diuretic therapy, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with ACCUPRIL. The possibility of hypotensive effects with ACCUPRIL may be minimized by either discontinuing the diuretic or cautiously increasing salt intake prior to initiation of treatment with ACCUPRIL. If it is not possible to discontinue the diuretic, the starting dose of quinapril should be reduced (see DOSAGE AND ADMINISTRATION).

Agents increasing serum potassium

Coadministration of ACCUPRIL with other drugs that raise serum potassium levels may result in hyperkalemia. Monitor serum potassium in such patients.

Tetracycline and other drugs that interact with magnesium

Simultaneous administration of tetracycline with ACCUPRIL reduced the absorption of tetracycline by approximately 28% to 37%, possibly due to the high magnesium content in ACCUPRIL tablets. This interaction should be considered if coprescribing ACCUPRIL and tetracycline or other drugs that interact with magnesium.

Lithium

Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving concomitant lithium and ACE inhibitor therapy. These drugs should be coadministered with caution and frequent monitoring of serum lithium levels is recommended. If a diuretic is also used, it may increase the risk of lithium toxicity.

Gold

Nitritoid reactions (symptoms include facial flushing, nausea, vomiting, and hypotension) have been reported rarely in patients on therapy with injectable gold (sodium aurothiomalate) and concomitant ACE inhibitor therapy.

Non-steroidal anti-inflammatory agents including selective cyclooxygenase-2 inhibitors (COX-2 inhibitors)

In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, co-administration of NSAIDs, including selective COX-2 inhibitors, with ACE inhibitors, including quinapril, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving quinapril and NSAID therapy.

The antihypertensive effect of ACE inhibitors, including quinapril may be attenuated by NSAIDs.

Agents that inhibit mTOR

Patients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.

Other agents

Drug interaction studies of ACCUPRIL with other agents showed:

  • Multiple dose therapy with propranolol or cimetidine has no effect on the pharmacokinetics of single doses of ACCUPRIL.
  • The anticoagulant effect of a single dose of warfarin (measured by prothrombin time) was not significantly changed by quinapril coadministration twice-daily.
  • ACCUPRIL treatment did not affect the pharmacokinetics of digoxin.
  • No pharmacokinetic interaction was observed when single doses of ACCUPRIL and hydrochlorothiazide were administered concomitantly.
  • Co-administration of multiple 10 mg doses of atorvastatin with 80 mg of ACCUPRIL resulted in no significant change in the steady-state pharmacokinetic parameters of atorvastatin.

Dual Blockade of the Renin-Angiotensin System (RAS)

Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function and electrolytes in patients on ACCUPRIL and other agents that affect the RAS.

Do not co-administer aliskiren with ACCUPRIL in patients with diabetes. Avoid concomitant use of aliskiren with ACCUPRIL in patients with renal impairment (GFR<60 mL/min/1.73 m2).

Carcinogenesis, Mutagenesis, Impairment of Fertility

Quinapril hydrochloride was not carcinogenic in mice or rats when given in doses up to 75 or 100 mg/kg/day (50 to 60 times the maximum human daily dose, respectively, on an mg/kg basis and 3.8 to 10 times the maximum human daily dose when based on an mg/m2 basis) for 104 weeks. Female rats given the highest dose level had an increased incidence of mesenteric lymph node hemangiomas and skin/subcutaneous lipomas. Neither quinapril nor quinaprilat were mutagenic in the Ames bacterial assay with or without metabolic activation. Quinapril was also negative in the following genetic toxicology studies: in vitro mammalian cell point mutation, sister chromatid exchange in cultured mammalian cells, micronucleus test with mice, in vitro chromosome aberration with V79 cultured lung cells, and in an in vivo cytogenetic study with rat bone marrow. There were no adverse effects on fertility or reproduction in rats at doses up to 100 mg/kg/day (60 and 10 times the maximum daily human dose when based on mg/kg and mg/m2, respectively).

Nursing Mothers

Because ACCUPRIL is secreted in human milk, caution should be exercised when this drug is administered to a nursing woman.

Pediatric Use

Neonates with a history of in utero exposure to ACCUPRIL

If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function. Removal of ACCUPRIL, which crosses the placenta, from the neonatal circulation is not significantly accelerated by these means.

The safety and effectiveness of ACCUPRIL in pediatric patients have not been established.

Geriatric Use

Clinical studies of ACCUPRIL did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy.

This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Elderly patients exhibited increased area under the plasma concentration time curve and peak levels for quinaprilat compared to values observed in younger patients; this appeared to relate to decreased renal function rather than to age itself.

ADVERSE REACTIONS

Hypertension

ACCUPRIL has been evaluated for safety in 4960 subjects and patients. Of these, 3203 patients, including 655 elderly patients, participated in controlled clinical trials. ACCUPRIL has been evaluated for long-term safety in over 1400 patients treated for 1 year or more.

Adverse experiences were usually mild and transient.

In placebo-controlled trials, discontinuation of therapy because of adverse events was required in 4.7% of patients with hypertension.

Adverse experiences probably or possibly related to therapy or of unknown relationship to therapy occurring in 1% or more of the 1563 patients in placebo-controlled hypertension trials who were treated with ACCUPRIL are shown below.

Adverse Events in Placebo-Controlled Trials
Accupril
(N=1563)
Incidence
(Discontinuance)
Placebo
(N=579)
Incidence
(Discontinuance)
Headache 5.6 (0.7) 10.9 (0.7)
Dizziness 3.9 (0.8) 2.6 (0.2)
Fatigue 2.6 (0.3) 1.0
Coughing 2.0 (0.5) 0.0
Nausea and/or Vomiting 1.4 (0.3) 1.9 (0.2)
Abdominal Pain 1.0 (0.2) 0.7

Heart Failure

ACCUPRIL has been evaluated for safety in 1222 ACCUPRIL treated patients. Of these, 632 patients participated in controlled clinical trials. In placebo-controlled trials, discontinuation of therapy because of adverse events was required in 6.8% of patients with congestive heart failure.

Adverse experiences probably or possibly related or of unknown relationship to therapy occurring in 1% or more of the 585 patients in placebo-controlled congestive heart failure trials who were treated with ACCUPRIL are shown below.

Accupril
(N=585)
Incidence
(Discontinuance)
Placebo
(N=295)
Incidence
(Discontinuance)
Dizziness 7.7 (0.7) 5.1 (1.0)
Coughing 4.3 (0.3) 1.4
Fatigue 2.6 (0.2) 1.4
Nausea and/or Vomiting 2.4 (0.2) 0.7
Chest Pain 2.4 1.0
Hypotension 2.9 (0.5) 1.0
Dyspnea 1.9 (0.2) 2.0
Diarrhea 1.7 1.0
Headache 1.7 1.0 (0.3)
Myalgia 1.5 2.0
Rash 1.4 (0.2) 1.0
Back Pain 1.2 0.3

See PRECAUTIONS, Cough.

Hypertension and/or Heart Failure

Clinical adverse experiences probably, possibly, or definitely related, or of uncertain relationship to therapy occurring in 0.5% to 1.0% (except as noted) of the patients with CHF or hypertension treated with ACCUPRIL (with or without concomitant diuretic) in controlled or uncontrolled trials (N=4847) and less frequent, clinically significant events seen in clinical trials or post-marketing experience (the rarer events are in italics) include (listed by body system):

General: back pain, malaise, viral infections, anaphylactoid reaction

Cardiovascular: palpitation, vasodilation, tachycardia, heart failure, hyperkalemia, myocardial infarction, cerebrovascular accident, hypertensive crisis, angina pectoris, orthostatic hypotension, cardiac rhythm disturbances, cardiogenic shock

Hematology: hemolytic anemia

Gastrointestinal: flatulence, dry mouth or throat, constipation, gastrointestinal hemorrhage, pancreatitis, abnormal liver function tests, dyspepsia

Metabolism and Nutrition Disorders: hyponatremia

Nervous/Psychiatric: somnolence, vertigo, syncope, nervousness, depression, insomnia, paresthesia

Integumentary: alopecia, increased sweating, pemphigus, pruritus, exfoliative dermatitis, photosensitivity reaction, dermatopolymyositis

Urogenital: urinary tract infection, impotence, acute renal failure, worsening renal failure

Respiratory: eosinophilic pneumonitis

Other: amblyopia, edema, arthralgia, pharyngitis, agranulocytosis, hepatitis, thrombocytopenia

Angioedema

Angioedema has been reported in patients receiving ACCUPRIL (0.1%). Angioedema associated with laryngeal edema may be fatal. If angioedema of the face, extremities, lips, tongue, glottis, and/or larynx occurs, treatment with ACCUPRIL should be discontinued and appropriate therapy instituted immediately. (See WARNINGS.)

Clinical Laboratory Test Findings

Hematology

(See WARNINGS)

Hyperkalemia

(See PRECAUTIONS)

Creatinine and Blood Urea Nitrogen

Increases (>1.25 times the upper limit of normal) in serum creatinine and blood urea nitrogen were observed in 2% and 2%, respectively, of all patients treated with ACCUPRIL alone. Increases are more likely to occur in patients receiving concomitant diuretic therapy than in those on ACCUPRIL alone. These increases often remit on continued therapy. In controlled studies of heart failure, increases in blood urea nitrogen and serum creatinine were observed in 11% and 8%, respectively, of patients treated with ACCUPRIL; most often these patients were receiving diuretics with or without digitalis.

INDICATIONS AND USAGE

Hypertension

ACCUPRIL is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including the class to which this drug principally belongs. There are no controlled trials demonstrating risk reduction with ACCUPRIL.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

ACCUPRIL may be used alone or in combination with thiazide diuretics.

Heart Failure

ACCUPRIL is indicated in the management of heart failure as adjunctive therapy when added to conventional therapy including diuretics and/or digitalis.

In using ACCUPRIL, consideration should be given to the fact that another ACE inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease. Available data are insufficient to show that ACCUPRIL does not have a similar risk (see WARNINGS).

Angioedema in black patients: Black patients receiving ACE inhibitor monotherapy have been reported to have a higher incidence of angioedema compared to non-blacks. It should also be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks.

ACCURETIC® (quinapril HCl, hydrochlorothiazide)

These highlights do not include all the information needed to use ACCURETIC safety and effectively. See full prescribing information for ACCURETIC.

WARNING: FETAL TOXICITY

  • When pregnancy is detected, discontinue ACCURETIC as soon as possible.
  • Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. See Warnings: Fetal Toxicity

CONTRAINDICATIONS

ACCURETIC is contraindicated in patients who are hypersensitive to quinapril or hydrochlorothiazide and in patients with a history of angioedema related to previous treatment with an ACE inhibitor.

Because of the hydrochlorothiazide components, this product is contraindicated in patients with anuria or hypersensitivity to other sulfonamide-derived drugs.

Do not co-administer ACCURETIC with aliskiren:

  • in patients with diabetes.

WARNINGS

Anaphylactoid and Possibly Related Reactions

Presumably because angiotensin converting inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors (including quinapril) may be subject to a variety of adverse reactions, some of them serious.

Head and Neck Angioedema

Angioedema of the face, extremities, lips, tongue, glottis, and larynx has been reported in patients treated with ACE inhibitors and has been seen in 0.1% of patients receiving quinapril. In two similarly sized US postmarketing quinapril trials that, combined, enrolled over 3,000 black patients and over 19,000 non-blacks, angioedema was reported in 0.30% and 0.55% of blacks (in Study 1 and 2, respectively) and 0.39% and 0.17% of non-blacks. Angioedema associated with laryngeal edema can be fatal. If laryngeal stridor or angioedema of the face, tongue, or glottis occurs, treatment with ACCURETIC should be discontinued immediately, the patient treated in accordance with accepted medical care, and carefully observed until the swelling disappears. In instances where swelling is confined to the face and lips, the condition generally resolves without treatment; antihistamines may be useful in relieving symptoms. Where there is involvement of the tongue, glottis, or larynx likely to cause airway obstruction, emergency therapy including, but not limited to, subcutaneous epinephrine solution 1:1000 (0.3 to 0.5 mL) should be promptly administered (see PRECAUTIONS and ADVERSE REACTIONS).

Patients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.

Intestinal Angioedema

Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.

Patients With a History of Angioedema

Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor (see also CONTRAINDICATIONS).

Anaphylactoid Reactions During Desensitization

Two patients undergoing desensitizing treatment with Hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent challenge.

Anaphylactoid Reactions During Membrane Exposure

Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.

Hepatic Failure

Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and (sometimes) death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE inhibitor and receive appropriate medical follow-up.

Hypotension

ACCURETIC can cause symptomatic hypotension, probably not more frequently than either monotherapy. It was reported in 1.2% of 1,571 patients receiving ACCURETIC during clinical trials. Like other ACE inhibitors, quinapril has been only rarely associated with hypotension in uncomplicated hypertensive patients.

Symptomatic hypotension sometimes associated with oliguria and/or progressive azotemia, and rarely acute renal failure and/or death, include patients with the following conditions or characteristics: heart failure, hyponatremia, high dose diuretic therapy, recent intensive diuresis or increase in diuretic dose, renal dialysis or severe volume and/or salt depletion of any etiology. Volume and/or salt depletion should be corrected before initiating therapy with ACCURETIC.

ACCURETIC should be used cautiously in patients receiving concomitant therapy with other antihypertensives. The thiazide component of ACCURETIC may potentiate the action of other antihypertensive drugs, especially ganglionic or peripheral adrenergic-blocking drugs. The antihypertensive effects of the thiazide component may also be enhanced in the postsympathectomy patients.

In patients at risk of excessive hypotension, therapy with ACCURETIC should be started under close medical supervision. Such patients should be followed closely for the first 2 weeks of treatment and whenever the dosage of quinapril or diuretic is increased. Similar considerations may apply to patients with ischemic heart or cerebrovascular disease in whom an excessive fall in blood pressure could result in myocardial infarction or cerebrovascular accident.

If excessive hypotension occurs, the patient should be placed in a supine position and, if necessary, treated with intravenous infusion of normal saline. ACCURETIC treatment usually can be continued following restoration of blood pressure and volume. If symptomatic hypotension develops, a dose reduction or discontinuation of ACCURETIC may be necessary.

Impaired Renal Function

ACCURETIC should be used with caution in patients with severe renal disease. Thiazides may precipitate azotemia in such patients, and the effects of repeated dosing may be cumulative.

When the renin-angiotensin-aldosterone system is inhibited by quinapril, changes in renal function may be anticipated in susceptible individuals. In patients with severe congestive heart failure, whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with angiotensin-converting enzyme inhibitors (including quinapril) may be associated with oliguria and/or progressive azotemia and (rarely) with acute renal failure and/or death.

In clinical studies in hypertensive patients with unilateral renal artery stenosis, treatment with ACE inhibitors was associated with increases in blood urea nitrogen and serum creatinine; these increases were reversible upon discontinuation of ACE inhibitor, concomitant diuretic, or both. When such patients are treated with ACCURETIC, renal function should be monitored during the first few weeks of therapy.

Some quinapril-treated hypertensive patients with no apparent preexisting renal vascular diseases have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when quinapril has been given concomitantly with a diuretic. This is more likely to occur in patients with pre-existing renal impairment. Dosage reduction of ACCURETIC may be required. Evaluation of the hypertensive patients should also include assessment of the renal function (see DOSAGE AND ADMINISTRATION).

Neutropenia/Agranulocytosis

Another ACE inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression rarely in patients with uncomplicated hypertension, but more frequently in patients with renal impairment, especially if they also have a collagen vascular disease, such as systemic lupus erythematosus or scleroderma. Agranulocytosis did occur during quinapril treatment in one patient with a history of neutropenia during previous captopril therapy. Available data from clinical trials of quinapril are insufficient to show that, in patients without prior reactions to other ACE inhibitors, quinapril does not cause agranulocytosis at similar rates. As with other ACE inhibitors, periodic monitoring of white blood cell counts in patients with collagen vascular disease and/or renal disease should be considered.

Fetal Toxicity

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue ACCURETIC as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.

In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue ACCURETIC, unless it is considered life-saving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to ACCURETIC for hypotension, oliguria, and hyperkalemia (see PRECAUTIONS, Pediatric Use).

Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that occurred in adults.

No teratogenic effects of quinapril were seen in studies of pregnant rats and rabbits. On a mg/kg basis, the doses used were up to 180 times (in rats) and one time (in rabbits) the maximum recommended human dose. No teratogenic effects of ACCURETIC were seen in studies of pregnant rats and rabbits. On a mg/kg (quinapril/hydrochlorothiazide) basis, the doses used were up to 188/94 times (in rats) and 0.6/0.3 times (in rabbits) the maximum recommended human dose.

Impaired Hepatic Function

ACCURETIC should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. Also, since the metabolism of quinapril to quinaprilat is normally dependent upon hepatic esterases, patients with impaired liver function could develop markedly elevated plasma levels of quinapril. No normal pharmacokinetic studies have been carried out in hypertensive patients with impaired liver function.

Systemic Lupus Erythematosus

Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus.

Acute Myopia and Secondary Angle-Closure Glaucoma

Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy.


PRECAUTIONS

General

Serum Electrolyte Abnormalities

In clinical trials, hyperkalemia (serum potassium ≥5.8 mmol/L) occurred in approximately 2% of patients receiving quinapril. In most cases, elevated serum potassium levels were isolated values which resolved despite continued therapy. Less than 0.1% of patients discontinued therapy due to hyperkalemia. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of other drugs that raise serum potassium levels.

Hydrochlorothiazide can cause hypokalemia and hyponatremia. Hypomagnesemia can result in hypokalemia which appears difficult to treat despite potassium repletion. Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. The risk of hyperkalemia may be increased in patients with renal insufficiency, diabetes mellitus or with concomitant use of drugs that raise serum potassium (see Drug Interactions). The risk of hypokalemia may be increased in patients with cirrhosis, brisk diuresis, or with concomitant use of drugs that lower serum potassium. Monitor serum electrolytes periodically.

Other Metabolic Disturbances

Hydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides.

Hydrochlorothiazide may raise the serum uric acid level due to reduced clearance of uric acid and may cause or exacerbate hyperuricemia and precipitate gout in susceptible patients.

Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels in patients with hypercalcemia receiving ACCURETIC.

Cough

Presumably due to the inhibition of the degradation of endogenous bradykinin, persistent nonproductive cough has been reported with all ACE inhibitors, resolving after discontinuation of therapy. ACE inhibitor-induced cough should be considered in the differential diagnosis of cough.

Surgery/Anesthesia

In patients undergoing surgery or during anesthesia with agents that produce hypotension, quinapril will block the angiotensin II formation that could otherwise occur secondary to compensatory renin release. Hypotension that occurs as a result of this mechanism can be corrected by volume expansion.

Information for Patients

Angioedema

Angioedema, including laryngeal edema, can occur with treatment with ACE inhibitors, especially following the first dose. Tell patients receiving ACCURETIC to immediately report any signs or symptoms suggesting angioedema (swelling of face, eyes, lips, or tongue, or difficulty in breathing) and to temporarily discontinue Accuretic until after consulting with the prescribing physician.

Pregnancy

Tell female patients of childbearing age about the consequences of exposure to ACCURETIC during pregnancy. Discuss treatment options with women planning to become pregnant. Ask patients to report pregnancies to their physicians as soon as possible.

Symptomatic Hypotension

Tell patients receiving ACCURETIC that lightheadedness can occur, especially during the first days of therapy, and to report it to the prescribing physician. Tell the patient if syncope occurs, discontinue ACCURETIC until the physician has been consulted.

Tell patients that inadequate fluid intake, excessive perspiration, diarrhea, or vomiting can lead to an excessive fall in blood pressure because of reduction in fluid volume, with the same consequences of lightheadedness and possible syncope.

Tell patients planning to undergo major surgery and/ or general or spinal anesthesia to inform their physicians that they are taking an ACE inhibitor.

Hyperkalemia

Tell patients receiving ACCURETIC not to use potassium supplements or salt substitutes containing potassium without consulting the prescribing physician.

Neutropenia

Tell patients to promptly report any indication of infection (e.g., sore throat, fever) which could be a sign of neutropenia.

NOTE: As with many other drugs, certain advice to patients being treated with quinapril is warranted. This information is intended to aid in the safe and effective use of this medication. It is not a disclosure of all possible adverse or intended effects.

Laboratory Tests

The hydrochlorothiazide component of ACCURETIC may decrease serum PBI levels without signs of thyroid disturbance.

Therapy with ACCURETIC should be interrupted for a few days before carrying out tests of parathyroid function.

Drug Interactions

Agents Increasing Serum Potassium

Coadministration of ACCURETIC with other drugs that raise serum potassium levels may result in hyperkalemia. Monitor serum potassium in such patients.

Lithium

Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors during therapy with lithium. Because renal clearance of lithium is reduced by thiazides, the risk of lithium toxicity is presumably raised further when, as in therapy with ACCURETIC, a thiazide diuretic is coadministered with the ACE inhibitor. ACCURETIC and lithium should be coadministered with caution, and frequent monitoring of serum lithium levels is recommended.

Dual Blockade of the Renin-Angiotensin System (RAS)

Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function and electrolytes in patients on ACCURETIC and other agents that affect the RAS.

Do not co-administer aliskiren with ACCURETIC in patients with diabetes. Avoid concomitant use of aliskiren with ACCURETIC in patients with renal impairment (GFR <60 mL/min/1.73 m2).

Tetracycline and Other Drugs That Interact with Magnesium

Simultaneous administration of tetracycline with quinapril reduced the absorption of tetracycline by approximately 28% to 37%, possibly due to the high magnesium content in quinapril tablets. This interaction should be considered if coprescribing quinapril and tetracycline or other drugs that interact with magnesium.

Gold

Nitritoid reactions (symptoms include facial flushing, nausea, vomiting, and hypotension) have been reported rarely in patients on therapy with injectable gold (sodium aurothiomalate) and concomitant ACE inhibitor therapy.

Non-Steroidal Anti-Inflammatory Agents including Selective Cyclooxygenase-2 Inhibitors (COX-2 Inhibitors)

In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, co-administration of NSAIDs, including selective COX-2 inhibitors, with ACE inhibitors, including quinapril, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving quinapril and NSAID therapy.

The antihypertensive effect of ACE inhibitors, including quinapril may be attenuated by NSAIDs.

Agents that inhibit mTOR

Patients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.

Other Agents

Drug interaction studies of quinapril and other agents showed:

  • Multiple dose therapy with propranolol or cimetidine has no effect on the pharmacokinetics of single doses of quinapril.
  • The anticoagulant effect of a single dose of warfarin (measured by prothrombin time) was not significantly changed by quinapril coadministration twice daily.
  • Digoxin: Thiazide-induced electrolyte disturbances, i.e. hypokalemia, hypomagnesemia, increase the risk of digoxin toxicity, which may lead to fatal arrhythmic events (See PRECAUTIONS).
  • No pharmacokinetic interaction was observed when single doses of quinapril and hydrochlorothiazide were administered concomitantly.

When administered concurrently, the following drugs may interact with thiazide diuretics.

  • Alcohol, Barbiturates, or Narcotics—potentiation of orthostatic hypotension may occur.
  • Antidiabetic Drugs (oral hypoglycemic agents and insulin)—dosage adjustments of the antidiabetic drug may be required (See PRECAUTIONS).
  • Cholestyramine and Colestipol Resin—absorption of hydrochlorothiazide is impaired in the presence of anionic exchange resins. Single doses of either cholestyramine or colestipol resins bind the hydrochlorothiazide and reduce its absorption from the gastrointestinal tract by up to 85% and 43%, respectively.
  • Corticosteroids, ACTH—intensified electrolyte depletion, particularly hypokalemia.
  • Pressor Amines (e.g., norepinephrine)—possible decreased response to pressor amines, but not sufficient to preclude their therapeutic use.
  • Skeletal Muscle Relaxants, Nondepolarizing (e.g., tubocurarine)—possible increased responsiveness to the muscle relaxant.
  • Non-steroidal Anti-inflammatory Drugs—the diuretic, natriuretic, and antihypertensive effects of thiazide diuretics may be reduced by concurrent administration of nonsteroidal anti-inflammatory agents.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity, mutagenicity, and fertility studies have not been conducted in animals with ACCURETIC.

Quinapril hydrochloride was not carcinogenic in mice or rats when given in doses up to 75 or 100 mg/kg/day (50 or 60 times the maximum human daily dose, respectively, on a mg/kg basis and 3.8 or 10 times the maximum human daily dose on a mg/m2 basis) for 104 weeks. Female rats given the highest dose level had an increased incidence of mesenteric lymph node hemangiomas and skin/subcutaneous lipomas. Neither quinapril nor quinaprilat were mutagenic in the Ames bacterial assay with or without metabolic activation. Quinapril was also negative in the following genetic toxicology studies: in vitro mammalian cell point mutation, sister chromatid exchange in cultured mammalian cells, micronucleus test with mice, in vitro chromosome aberration with V79 cultured lung cells, and in an in vivo cytogenetic study with rat bone marrow. There were no adverse effects on fertility or reproduction in rats at doses up to 100 mg/kg/day (60 and 10 times the maximum daily human dose when based on mg/kg and mg/m2, respectively).

Under the auspices of the National Toxicology Program, rats and mice received hydrochlorothiazide in their feed for 2 years, at doses up to 600 mg/kg/day in mice and up to 100 mg/kg/day in rats. These studies uncovered no evidence of a carcinogenic potential of hydrochlorothiazide in rats or female mice, but there was "equivocal" evidence of hepatocarcinogenicity in male mice. Hydrochlorothiazide was not genotoxic in in vitro assays using strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 of Salmonella typhimurium (the Ames test); in the Chinese hamster ovary (CHO) test for chromosomal aberrations; or in vivo assays using mouse germinal cell chromosomes, Chinese hamster bone marrow chromosomes, and the Drosophila sex-linked recessive lethal trait gene. Positive test results were obtained in the in vitro CHO sister chromatid exchange (clastogenicity) test and in the mouse lymphoma cell (mutagenicity) assays, using concentrations of hydrochlorothiazide of 43 to 1300 µg/mL. Positive test results were also obtained in the Aspergillus nidulans nondisjunction assay, using an unspecified concentration of hydrochlorothiazide.

Hydrochlorothiazide had no adverse effects on the fertility of mice and rats of either sex in studies wherein these species were exposed, via their diets, to doses of up to 100 and 4 mg/kg/day, respectively, prior to mating and throughout gestation.

Nursing Mothers

Because quinapril and hydrochlorothiazide are secreted in human milk, caution should be exercised when ACCURETIC is administered to a nursing woman.

Because of the potential for serious adverse reactions in nursing infants from hydrochlorothiazide and the unknown effects of quinapril in infants, a decision should be made whether to discontinue nursing or to discontinue ACCURETIC, taking into account the importance of the drug to the mother.

Geriatric Use

Clinical studies of quinapril HCl/hydrochlorothiazide did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Pediatric Use

Neonates with a history of in utero exposure to ACCURETIC

If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function. Removal of quinapril, which crosses the placenta, from the neonatal circulation is not significantly accelerated by these means.

Safety and effectiveness of ACCURETIC in children have not been established.

ADVERSE REACTIONS

ACCURETIC has been evaluated for safety in 1571 patients in controlled and uncontrolled studies. Of these, 498 were given quinapril plus hydrochlorothiazide for at least 1 year, with 153 patients extending combination therapy for over 2 years. In clinical trials with ACCURETIC, no adverse experience specific to the combination has been observed. Adverse experiences that have occurred have been limited to those that have been previously reported with quinapril or hydrochlorothiazide.

Adverse experiences were usually mild and transient, and there was no relationship between side effects and age, sex, race, or duration of therapy. Discontinuation of therapy because of adverse effects was required in 2.1% in patients in controlled studies. The most common reasons for discontinuation of therapy with ACCURETIC were cough (1.0%; see PRECAUTIONS) and headache (0.7%).

Adverse experiences probably or possibly related to therapy or of unknown relationship to therapy occurring in 1% or more of the 943 patients treated with quinapril plus hydrochlorothiazide in controlled trials are shown below.

   Percent of Patients in Controlled Trials
   Quinapril/HCTZ
N = 943
Placebo
N = 100
Headache 6.7 30.0
Dizziness 4.8 4.0
Coughing 3.2 2.0
Fatigue 2.9 3.0
Myalgia 2.4 5.0
Viral Infection 1.9 4.0
Rhinitis 2.0 3.0
Nausea and/or Vomiting 1.8 6.0
Abdominal Pain 1.7 4.0
Back Pain 1.5 2.0
Diarrhea 1.4 1.0
Upper Respiratory Infection 1.3 4.0
Insomnia 1.2 2.0
Somnolence 1.2 0.0
Bronchitis 1.2 1.0
Dyspepsia 1.2 2.0
Asthenia 1.1 1.0
Pharyngitis 1.1 2.0
Vasodilatation 1.0 1.0
Vertigo 1.0 2.0
Chest Pain 1.0 2.0

Clinical adverse experiences probably, possibly, or definitely related or of uncertain relationship to therapy occurring in ≥0.5% to <1.0% (except as noted) of the patients treated with quinapril/HCTZ in controlled and uncontrolled trials (N=1571) and less frequent, clinically significant events seen in clinical trials or postmarketing experience (the rarer events are in italics) include (listed by body system):

BODY AS A WHOLE: Asthenia, Malaise
CARDIOVASCULAR: Palpitation, Tachycardia, Heart Failure, Hyperkalemia, Myocardial Infarction, Cerebrovascular Accident, Hypertensive Crisis, Angina Pectoris, Orthostatic Hypotension, Cardiac Rhythm Disturbance
GASTROINTESTINAL: Mouth or Throat Dry, Gastrointestinal Hemorrhage, Pancreatitis, Abnormal Liver Function Tests
NERVOUS/PSYCHIATRIC: Nervousness, Vertigo, Paresthesia
RESPIRATORY: Sinusitis, Dyspnea
INTEGUMENTARY: Pruritus, Sweating Increased, Erythema Multiforme, Exfoliative Dermatitis, Photosensitivity Reaction, Alopecia, Pemphigus
UROGENITAL SYSTEM: Acute Renal Failure, Impotence
OTHER: Agranulocytosis, Thrombocytopenia, Arthralgia
Angioedema: Angioedema has been reported in 0.1% of patients receiving quinapril (0.1%) (see WARNINGS).

Postmarketing Experience

The following serious nonfatal adverse events, regardless of their relationship to quinapril and HCTZ combination tablets, have been reported during extensive postmarketing experience:

BODY AS A WHOLE: Shock, accidental injury, neoplasm, cellulitis, ascites, generalized edema, hernia and anaphylactoid reaction.

CARDIOVASCULAR SYSTEM: Bradycardia, cor pulmonale, vasculitis, and deep thrombosis.

DIGESTIVE SYSTEM: Gastrointestinal carcinoma, cholestatic jaundice, hepatitis, esophagitis, vomiting, and diarrhea.

EYE DISORDERS: Acute myopia and acute angle closure glaucoma (see WARNINGS).

HEMIC SYSTEM: Anemia.

METABOLIC AND NUTRITIONAL DISORDERS: Weight loss.

MUSCULOSKELETAL SYSTEM: Myopathy, myositis, and arthritis.

NERVOUS SYSTEM: Paralysis, hemiplegia, speech disorder, abnormal gait, meningism, and amnesia.

RESPIRATORY SYSTEM: Pneumonia, asthma, respiratory infiltration, and lung disorder.

SKIN AND APPENDAGES: Urticaria, macropapular rash, and petechiases.

SPECIAL SENSES: Abnormal vision.

UROGENITAL SYSTEM: Kidney function abnormal, albuminuria, pyuria, hematuria, and nephrosis.

Quinapril monotherapy has been evaluated for safety in 4960 patients. In clinical trials adverse events which occurred with quinapril were also seen with ACCURETIC. In addition, the following were reported for quinapril at an incidence >0.5%: depression, back pain, constipation, syncope, and amblyopia.

Hydrochlorothiazide has been extensively prescribed for many years, but there has not been enough systematic collection of data to support an estimate of the frequency of the observed adverse reactions. Within organ-system groups, the reported reactions are listed here in decreasing order of severity, without regard to frequency.

BODY AS A WHOLE: Weakness.
CARDIOVASCULAR: Orthostatic hypotension (may be potentiated by alcohol, barbiturates, or narcotics).
DIGESTIVE: Pancreatitis, jaundice (intrahepatic cholestatic), sialadenitis, vomiting, diarrhea, cramping, nausea, gastric irritation, constipation, and anorexia.
NEUROLOGIC: Vertigo, lightheadedness, transient blurred vision, headache, paresthesia, xanthopsia, weakness, and restlessness.
MUSCULOSKELETAL: Muscle spasm.
HEMATOLOGIC: Aplastic anemia, agranulocytosis, leukopenia, thrombocytopenia, and hemolytic anemia.
RENAL: Renal failure, renal dysfunction, interstitial nephritis (see WARNINGS).
METABOLIC: Hyperglycemia, glycosuria, and hyperuricemia.
HYPERSENSITIVITY: Necrotizing angiitis, Stevens-Johnson syndrome, respiratory distress (including pneumonitis and pulmonary edema), purpura, urticaria, rash, and photosensitivity.

Clinical Laboratory Test Findings

Serum Electrolytes

See PRECAUTIONS.

Creatinine, Blood Urea Nitrogen

Increases (>1.25 times the upper limit of normal) in serum creatinine and blood urea nitrogen were observed in 3% and 4%, respectively, of patients treated with ACCURETIC. Most increases were minor and reversible, which can occur in patients with essential hypertension but most frequently in patients with renal artery stenosis (see PRECAUTIONS).

PBI and Tests of Parathyroid Function

See PRECAUTIONS.

Hematology

See WARNINGS.

Other (causal relationships unknown)

Other clinically important changes in standard laboratory tests were rarely associated with ACCURETIC administration. Elevations in uric acid, glucose, magnesium, cholesterol, triglyceride, and calcium (see PRECAUTIONS) have been reported.

INDICATIONS AND USAGE

Hypertension

ACCURETIC is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including the class to which this drug principally belongs. There are no controlled trials demonstrating risk reduction with ACCURETIC.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

This fixed combination is not indicated for the initial therapy of hypertension (see DOSAGE AND ADMINISTRATION).

In using ACCURETIC, consideration should be given to the fact that another angiotensin-converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen-vascular disease. Available data are insufficient to show that quinapril does not have a similar risk (see WARNINGS: Neutropenia/Agranulocytosis).

Angioedema in Black Patients

Black patients receiving ACE inhibitor monotherapy have been reported to have a higher incidence of angioedema compared to non-blacks. It should also be noted that in controlled clinical trials, ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks.

ALDACTAZIDE® (spironolactone, hydrochlorothiazide)

These highlights do not include all the information needed to use ALDACTAZIDE safety and effectively. See full prescribing information for ALDACTAZIDE.

WARNING

Spironolactone, an ingredient of ALDACTAZIDE, has been shown to be a tumorigen in chronic toxicity studies in rats (see Precautions). ALDACTAZIDE should be used only in those conditions described under Indications and Usage. Unnecessary use of this drug should be avoided.

Fixed-dose combination drugs are not indicated for initial therapy of edema or hypertension. Edema or hypertension requires therapy titrated to the individual patient. If the fixed combination represents the dosage so determined, its use may be more convenient in patient management. The treatment of hypertension and edema is not static but must be reevaluated as conditions in each patient warrant.

CONTRAINDICATIONS

ALDACTAZIDE is contraindicated in patients with anuria, acute renal insufficiency, significant impairment of renal excretory function, hypercalcemia, hyperkalemia, Addison's disease, and in patients who are allergic to thiazide diuretics or to other sulfonamide-derived drugs. ALDACTAZIDE may also be contraindicated in acute or severe hepatic failure.

WARNINGS

Potassium supplementation, either in the form of medication or as a diet rich in potassium, should not ordinarily be given in association with ALDACTAZIDE therapy. Excessive potassium intake may cause hyperkalemia in patients receiving ALDACTAZIDE (see Precautions: General).

Concomitant administration of ALDACTAZIDE with the following drugs or potassium sources may lead to severe hyperkalemia:

  • other potassium-sparing diuretics
  • ACE inhibitors
  • angiotensin II receptor antagonists
  • aldosterone blockers
  • non-steroidal anti-inflammatory drugs (NSAIDs), e.g., indomethacin
  • heparin and low molecular weight heparin
  • other drugs or conditions known to cause hyperkalemia
  • potassium supplements
  • diet rich in potassium
  • salt substitutes containing potassium

ALDACTAZIDE should not be administered concurrently with other potassium-sparing diuretics. Spironolactone, when used with ACE inhibitors or indomethacin, even in the presence of a diuretic, has been associated with severe hyperkalemia. Extreme caution should be exercised when ALDACTAZIDE is given concomitantly with these drugs (see Precautions: Drug interactions).

ALDACTAZIDE should be used with caution in patients with impaired hepatic function because minor alterations of fluid and electrolyte balance may precipitate hepatic coma.

Lithium generally should not be given with diuretics (see Precautions: Drug interactions).

Thiazides should be used with caution in severe renal disease. In patients with renal disease, thiazides may precipitate azotemia. Cumulative effects of the drug may develop in patients with impaired renal function.

Thiazides may add to or potentiate the action of other antihypertensive drugs.

Sensitivity reactions to thiazides may occur in patients with or without a history of allergy or bronchial asthma.

Sulfonamide derivatives, including thiazides, have been reported to exacerbate or activate systemic lupus erythematosus.

Acute Myopia and Secondary Angle-Closure Glaucoma

Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy.


PRECAUTIONS

General

Serum Electrolyte Abnormalities

Spironolactone can cause hyperkalemia. The risk of hyperkalemia may be increased in patients with renal insufficiency, diabetes mellitus or with concomitant use of drugs that raise serum potassium (see Drug Interactions). Hydrochlorothiazide can cause hypokalemia and hyponatremia. The risk of hypokalemia may be increased in patients with cirrhosis, brisk diuresis, or with concomitant use of drugs that lower serum potassium. Hypomagnesemia can result in hypokalemia which appears difficult to treat despite potassium repletion. Monitor serum electrolytes periodically.

Other Metabolic Disturbances

Hydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides.

Hydrochlorothiazide may raise the serum uric acid level due to reduced clearance of uric acid and may cause or exacerbate hyperuricemia and precipitate gout in susceptible patients.

Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels in patients with hypercalcemia receiving ALDACTAZIDE.

Gynecomastia

Gynecomastia may develop in association with the use of spironolactone; physicians should be alert to its possible onset. The development of gynecomastia appears to be related to both dosage level and duration of therapy and is normally reversible when ALDACTAZIDE is discontinued. In rare instances, some breast enlargement may persist when ALDACTAZIDE is discontinued.

Somnolence

Somnolence and dizziness have been reported to occur in some patients. Caution is advised when driving or operating machinery until the response to initial treatment has been determined.

Information for patients

Patients who receive ALDACTAZIDE should be advised to avoid potassium supplements and foods containing high levels of potassium including salt substitutes.

Laboratory tests

Periodic determination of serum electrolytes to detect possible electrolyte imbalance should be done at appropriate intervals, particularly in the elderly and those with significant renal or hepatic impairments.

Drug interactions

ACE inhibitors, Angiotensin II receptor antagonists, aldosterone blockers, potassium supplements, heparin, low molecular weight heparin, and other drugs known to cause hyperkalemia:

Concomitant administration may lead to severe hyperkalemia.

Alcohol, barbiturates, or narcotics: Potentiation of orthostatic hypotension may occur.

Antidiabetic drugs (e.g., oral agents, insulin): Dosage adjustment of the antidiabetic drug may be required (see Precautions).

Corticosteroids, ACTH: Intensified electrolyte depletion, particularly hypokalemia, may occur.

Pressor amines (e.g., norepinephrine): Both spironolactone and hydrochlorothiazide reduce the vascular responsiveness to norepinephrine. Therefore, caution should be exercised in the management of patients subjected to regional or general anesthesia while they are being treated with ALDACTAZIDE.

Skeletal muscle relaxants, nondepolarizing (e.g., tubocurarine): Possible increased responsiveness to the muscle relaxant may result.

Lithium: Lithium generally should not be given with diuretics. Diuretic agents reduce the renal clearance of lithium and add a high risk of lithium toxicity.

Nonsteroidal anti-inflammatory drugs (NSAIDs): In some patients, the administration of an NSAID can reduce the diuretic, natriuretic, and antihypertensive effects of loop, potassium-sparing, and thiazide diuretics. Combination of NSAIDs, e.g., indomethacin, with potassium-sparing diuretics has been associated with severe hyperkalemia. Therefore, when ALDACTAZIDE and NSAIDs are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained.

Digoxin: Spironolactone has been shown to increase the half-life of digoxin. This may result in increased serum digoxin levels and subsequent digitalis toxicity. Monitor serum digoxin levels and adjust dose accordingly. Thiazide-induced electrolyte disturbances, i.e. hypokalemia, hypomagnesemia, increase the risk of digoxin toxicity, which may lead to fatal arrhythmic events (see Precautions).

Cholestyramine: Hyperkalemic metabolic acidosis has been reported in patients given spironolactone concurrently with cholestyramine.

Drug/Laboratory test interactions

Thiazides should be discontinued before carrying out tests for parathyroid function (see Precautions: General). Thiazides may also decrease serum PBI levels without evidence of alteration of thyroid function.

Several reports of possible interference with digoxin radioimmunoassays by spironolactone or its metabolites have appeared in the literature. Neither the extent nor the potential clinical significance of its interference (which may be assay specific) has been fully established.

Carcinogenesis, mutagenesis, impairment of fertility

Spironolactone

Orally administered spironolactone has been shown to be a tumorigen in dietary administration studies performed in rats, with its proliferative effects manifested on endocrine organs and the liver. In an 18-month study using doses of about 50, 150, and 500 mg/kg/day, there were statistically significant increases in benign adenomas of the thyroid and testes and, in male rats, a dose-related increase in proliferative changes in the liver (including hepatocytomegaly and hyperplastic nodules). In a 24-month study in which the same strain of rat was administered doses of about 10, 30 and 100 mg spironolactone/kg/day, the range of proliferative effects included significant increases in hepatocellular adenomas and testicular interstitial cell tumors in males, and significant increases in thyroid follicular cell adenomas and carcinomas in both sexes. There was also a statistically significant, but not dose-related, increase in benign uterine endometrial stromal polyps in females.

A dose-related (above 30 mg/kg/day) incidence of myelocytic leukemia was observed in rats fed daily doses of potassium canrenoate (a compound chemically similar to spironolactone and whose primary metabolite, canrenone, is also a major product of spironolactone in man) for a period of one year. In two year studies in the rat, oral administration of potassium canrenoate was associated with myelocytic leukemia and hepatic, thyroid, testicular, and mammary tumors.

Neither spironolactone nor potassium canrenoate produced mutagenic effects in tests using bacteria or yeast. In the absence of metabolic activation, neither spironolactone nor potassium canrenoate has been shown to be mutagenic in mammalian tests in vitro. In the presence of metabolic activation, spironolactone has been reported to be negative in some mammalian mutagenicity tests in vitro and inconclusive (but slightly positive) for mutagenicity in other mammalian tests in vitro. In the presence of metabolic activation, potassium canrenoate has been reported to test positive for mutagenicity in some mammalian tests in vitro, inconclusive in others, and negative in still others.

In a three-litter reproduction study in which female rats received dietary doses of 15 and 500 mg spironolactone/kg/day, there were no effects on mating and fertility, but there was a small increase in incidence of stillborn pups at 500 mg/kg/day. When injected into female rats (100 mg/kg/day for 7 days, i.p.), spironolactone was found to increase the length of the estrous cycle by prolonging diestrus during treatment and inducing constant diestrus during a two week posttreatment observation period. These effects were associated with retarded ovarian follicle development and a reduction in circulating estrogen levels, which would be expected to impair mating, fertility, and fecundity. Spironolactone (100 mg/kg/day), administered i.p. to female mice during a two week cohabitation period with untreated males, decreased the number of mated mice that conceived (effect shown to be caused by an inhibition of ovulation) and decreased the number of implanted embryos in those that became pregnant (effect shown to be caused by an inhibition of implantation), and at 200 mg/kg, also increased the latency period to mating.

Hydrochlorothiazide

Two year feeding studies in mice and rats conducted under the auspices of the National Toxicology Program (NTP) uncovered no evidence of a carcinogenic potential of hydrochlorothiazide in female mice (at doses of up to approximately 600 mg/kg/day) or in male and female rats (at doses of up to approximately 100 mg/kg/day). The NTP, however, found equivocal evidence for hepatocarcinogenicity in male mice.

Hydrochlorothiazide was not genotoxic in in vitro assays using strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 of Salmonella typhimurium (Ames assay) and in the Chinese Hamster Ovary (CHO) test for chromosomal aberrations, or in in vivo assays using mouse germinal cell chromosomes, Chinese hamster bone marrow chromosomes, and the Drosophila sex-linked recessive lethal trait gene. Positive test results were obtained only in the in vitro CHO Sister Chromatid Exchange (clastogenicity) and in the Mouse Lymphoma Cell (mutagenicity) assays, using concentrations of hydrochlorothiazide from 43 to 1300 µg/mL, and in the Aspergillus nidulans non-disjunction assay at an unspecified concentration.

Hydrochlorothiazide had no adverse effects on the fertility of mice and rats of either sex in studies wherein these species were exposed, via their diet, to doses of up to 100 and 4 mg/kg, respectively, prior to mating and throughout gestation.

Pregnancy

Teratogenic effects.

Hydrochlorothiazide

Studies in which hydrochlorothiazide was orally administered to pregnant mice and rats during their respective periods of major organogenesis at doses up to 3000 and 1000 mg hydrochlorothiazide/kg, respectively, provided no evidence of harm to the fetus. There are, however, no adequate and well-controlled studies in pregnant women.

Spironolactone

Teratology studies with spironolactone have been carried out in mice and rabbits at doses of up to 20 mg/kg/day. On a body surface area basis, this dose in the mouse is substantially below the maximum recommended human dose and, in the rabbit, approximates the maximum recommended human dose. No teratogenic or other embryo-toxic effects were observed in mice, but the 20 mg/kg dose caused an increased rate of resorption and a lower number of live fetuses in rabbits. Because of its antiandrogenic activity and the requirement of testosterone for male morphogenesis, spironolactone may have the potential for adversely affecting sex differentiation of the male during embryogenesis. When administered to rats at 200 mg/kg/day between gestation days 13 and 21 (late embryogenesis and fetal development), feminization of male fetuses was observed. Offspring exposed during late pregnancy to 50 and 100 mg/kg/day doses of spironolactone exhibited changes in the reproductive tract including dose-dependent decreases in weights of the ventral prostate and seminal vesicle in males, ovaries and uteri that were enlarged in females, and other indications of endocrine dysfunction, that persisted into adulthood. There are no adequate and well-controlled studies with ALDACTAZIDE in pregnant women. Spironolactone has known endocrine effects in animals including progestational and antiandrogenic effects. The antiandrogenic effects can result in apparent estrogenic side effects in humans, such as gynecomastia. Therefore, the use of ALDACTAZIDE in pregnant women requires that the anticipated benefit be weighed against the possible hazards to the fetus.

Non-teratogenic effects

Spironolactone or its metabolites may, and hydrochlorothiazide does, cross the placental barrier and appear in cord blood. Therefore, the use of ALDACTAZIDE in pregnant women requires that the anticipated benefit be weighed against possible hazards to the fetus. The hazards include fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults.

Nursing mothers

Canrenone, a major (and active) metabolite of spironolactone, appears in human breast milk. Because spironolactone has been found to be tumorigenic in rats, a decision should be made whether to discontinue the drug, taking into account the importance of the drug to the mother. If use of the drug is deemed essential, an alternative method of infant feeding should be instituted.

Thiazides are excreted in human milk in small amounts. Thiazides when given at high doses can cause intense diuresis which can in turn inhibit milk production. The use of ALDACTAZIDE during breast feeding is not recommended. If ALDACTAZIDE is used during breast feeding, doses should be kept as low as possible.

Pediatric use

Safety and effectiveness in pediatric patients have not been established.

ADVERSE REACTIONS

The following adverse reactions have been reported and, within each category (body system), are listed in order of decreasing severity.

Hydrochlorothiazide

Body as a whole: Weakness.

Cardiovascular: Hypotension including orthostatic hypotension (may be aggravated by alcohol, barbiturates, narcotics, or antihypertensive drugs).

Digestive: Pancreatitis, jaundice (intrahepatic cholestatic jaundice), diarrhea, vomiting, sialoadenitis, cramping, constipation, gastric irritation, nausea, anorexia.

Eye Disorders: acute myopia and acute angle closure glaucoma (see Warnings).

Hematologic: Aplastic anemia, agranulocytosis, leukopenia, hemolytic anemia, thrombocytopenia.

Hypersensitivity: Anaphylactic reactions, necrotizing angitis (vasculitis and cutaneous vasculitis), respiratory distress including pneumonitis and pulmonary edema, photosensitivity, fever, urticaria, rash, purpura.

Metabolic: Electrolyte imbalance (see Precautions), hyperglycemia, glycosuria, hyperuricemia.

Musculoskeletal: Muscle spasm.

Nervous system/psychiatric: Vertigo, paresthesias, dizziness, headache, restlessness.

Renal: Renal failure, renal dysfunction, interstitial nephritis (see Warnings).

Skin: Erythema multiforme, pruritus.

Special senses: Transient blurred vision, xanthopsia.

Spironolactone

Digestive: Gastric bleeding, ulceration, gastritis, diarrhea and cramping, nausea, vomiting.

Reproductive: Gynecomastia (see Precautions), inability to achieve or maintain erection, irregular menses or amenorrhea, postmenopausal bleeding, breast pain. Carcinoma of the breast has been reported in patients taking spironolactone but a cause and effect relationship has not been established.

Hematologic: Leukopenia (including agranulocytosis), thrombocytopenia.

Hypersensitivity: Fever, urticaria, maculopapular or erythematous cutaneous eruptions, anaphylactic reactions, vasculitis.

Metabolism: Hyperkalemia, electrolyte disturbances (see Warnings and Precautions).

Musculoskeletal: Leg cramps.

Nervous system/psychiatric: Lethargy, mental confusion, ataxia, dizziness, headache, drowsiness.

Liver/biliary: A very few cases of mixed cholestatic/hepatocellular toxicity, with one reported fatality, have been reported with spironolactone administration.

Renal: Renal dysfunction (including renal failure).

Skin: Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN), drug rash with eosinophilia and systemic symptoms (DRESS), alopecia, pruritus.

INDICATIONS AND USAGE

Spironolactone, an ingredient of ALDACTAZIDE, has been shown to be a tumorigen in chronic toxicity studies in rats (see Precautions section). ALDACTAZIDE should be used only in those conditions described below. Unnecessary use of this drug should be avoided.

ALDACTAZIDE is indicated for:

Edematous conditions for patients with:

Congestive heart failure:

  • For the management of edema and sodium retention when the patient is only partially responsive to, or is intolerant of, other therapeutic measures;
  • The treatment of diuretic-induced hypokalemia in patients with congestive heart failure when other measures are considered inappropriate;
  • The treatment of patients with congestive heart failure taking digitalis when other therapies are considered inadequate or inappropriate.

Cirrhosis of the liver accompanied by edema and/or ascites:

  • Aldosterone levels may be exceptionally high in this condition. ALDACTAZIDE is indicated for maintenance therapy together with bed rest and the restriction of fluid and sodium.

The nephrotic syndrome:

  • For nephrotic patients when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics do not provide an adequate response.

Essential hypertension:

  • For patients with essential hypertension in whom other measures are considered inadequate or inappropriate;
  • In hypertensive patients for the treatment of a diuretic-induced hypokalemia when other measures are considered inappropriate;
  • ALDACTAZIDE is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes, including the classes to which this drug principally belongs. There are no controlled trials demonstrating risk reduction with ALDACTAZIDE.

    Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

    Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

    Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

    Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

Usage in Pregnancy

The routine use of diuretics in an otherwise healthy woman is inappropriate and exposes mother and fetus to unnecessary hazard. Diuretics do not prevent development of toxemia of pregnancy, and there is no satisfactory evidence that they are useful in the treatment of developing toxemia.

Edema during pregnancy may arise from pathologic causes or from the physiologic and mechanical consequences of pregnancy. ALDACTAZIDE is indicated in pregnancy when edema is due to pathologic causes just as it is in the absence of pregnancy (however, see Precautions: Pregnancy). Dependent edema in pregnancy, resulting from restriction of venous return by the expanded uterus, is properly treated through elevation of the lower extremities and use of support hose; use of diuretics to lower intravascular volume in this case is unsupported and unnecessary. There is hypervolemia during normal pregnancy which is not harmful to either the fetus or the mother (in the absence of cardiovascular disease), but which is associated with edema, including generalized edema, in the majority of pregnant women. If this edema produces discomfort, increased recumbency will often provide relief. In rare instances, this edema may cause extreme discomfort that is not relieved by rest. In these cases, a short course of diuretics may provide relief and may be appropriate.

ALDACTONE® (spironolactone)

These highlights do not include all the information needed to use ALDACTONE safety and effectively. See full prescribing information for ALDACTONE.

WARNING

ALDACTONE has been shown to be a tumorigen in chronic toxicity studies in rats (see Precautions). ALDACTONE should be used only in those conditions described under Indications and Usage. Unnecessary use of this drug should be avoided.

CONTRAINDICATIONS

ALDACTONE is contraindicated for patients with anuria, acute renal insufficiency, significant impairment of renal excretory function, hyperkalemia, Addison's disease, and with concomitant use of eplerenone.

WARNINGS

Potassium supplementation

Potassium supplementation, either in the form of medication or as a diet rich in potassium, should not ordinarily be given in association with ALDACTONE therapy. Excessive potassium intake may cause hyperkalemia in patients receiving ALDACTONE (see Precautions: General).

Concomitant administration of ALDACTONE with the following drugs or potassium sources may lead to severe hyperkalemia:

  • other potassium-sparing diuretics
  • ACE inhibitors
  • angiotensin II antagonists
  • aldosterone blockers
  • non-steroidal anti-inflammatory drugs (NSAIDs), e.g., indomethacin
  • heparin and low molecular weight heparin
  • other drugs or conditions known to cause hyperkalemia
  • potassium supplements
  • diet rich in potassium
  • salt substitutes containing potassium

ALDACTONE should not be administered concurrently with other potassium-sparing diuretics. ALDACTONE, when used with ACE inhibitors or indomethacin, even in the presence of a diuretic, has been associated with severe hyperkalemia. Extreme caution should be exercised when ALDACTONE is given concomitantly with these drugs.

Hyperkalemia in patients with severe heart failure

Hyperkalemia may be fatal. It is critical to monitor and manage serum potassium in patients with severe heart failure receiving ALDACTONE. Avoid using other potassium-sparing diuretics. Avoid using oral potassium supplements in patients with serum potassium > 3.5 mEq/L. RALES excluded patients with a serum creatinine > 2.5 mg/dL or a recent increase in serum creatinine > 25%. The recommended monitoring for potassium and creatinine is one week after initiation or increase in dose of ALDACTONE, monthly for the first 3 months, then quarterly for a year, and then every 6 months. Discontinue or interrupt treatment for serum potassium > 5 mEq/L or for serum creatinine > 4 mg/dL. (See Clinical Studies: Severe heart failure, and Dosage and Administration: Severe heart failure.)

ALDACTONE should be used with caution in patients with impaired hepatic function because minor alterations of fluid and electrolyte balance may precipitate hepatic coma.

Lithium generally should not be given with diuretics (see Precautions: Drug interactions).


PRECAUTIONS

General

All patients receiving diuretic therapy should be observed for evidence of fluid or electrolyte imbalance, e.g., hypomagnesemia, hyponatremia, hypochloremic alkalosis, and hyperkalemia.

Serum and urine electrolyte determinations are particularly important when the patient is vomiting excessively or receiving parenteral fluids. Warning signs or symptoms of fluid and electrolyte imbalance, irrespective of cause, include dryness of the mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, and gastrointestinal disturbances such as nausea and vomiting. Hyperkalemia may occur in patients with impaired renal function or excessive potassium intake and can cause cardiac irregularities, which may be fatal. Consequently, no potassium supplement should ordinarily be given with ALDACTONE.

If hyperkalemia is suspected (warning signs include paresthesia, muscle weakness, fatigue, flaccid paralysis of the extremities, bradycardia, and shock), an electrocardiogram (ECG) should be obtained. However, it is important to monitor serum potassium levels because mild hyperkalemia may not be associated with ECG changes.

If hyperkalemia is present, ALDACTONE should be discontinued immediately. With severe hyperkalemia, the clinical situation dictates the procedures to be employed. These may include the intravenous administration of calcium chloride solution, sodium bicarbonate solution and/or the oral or parenteral administration of glucose with a rapid-acting insulin preparation. These are temporary measures to be repeated as required. Cationic exchange resins such as sodium polystyrene sulfonate may be orally or rectally administered. Persistent hyperkalemia may require dialysis.

Reversible hyperchloremic metabolic acidosis, usually in association with hyperkalemia, has been reported to occur in some patients with decompensated hepatic cirrhosis, even in the presence of normal renal function.

Dilutional hyponatremia, manifested by dryness of the mouth, thirst, lethargy, and drowsiness, and confirmed by a low serum sodium level, may be caused or aggravated, especially when ALDACTONE is administered in combination with other diuretics, and dilutional hyponatremia may occur in edematous patients in hot weather; appropriate therapy is water restriction rather than administration of sodium, except in rare instances when the hyponatremia is life-threatening.

ALDACTONE therapy may cause a transient elevation of BUN, especially in patients with pre-existing renal impairment. ALDACTONE may cause mild acidosis.

Gynecomastia may develop in association with the use of ALDACTONE; physicians should be alert to its possible onset. The development of gynecomastia appears to be related to both dosage level and duration of therapy and is normally reversible when ALDACTONE is discontinued. In rare instances, some breast enlargement may persist when ALDACTONE is discontinued.

Somnolence and dizziness have been reported to occur in some patients. Caution is advised when driving or operating machinery until the response to initial treatment has been determined.

Information for patients

Patients who receive ALDACTONE should be advised to avoid potassium supplements and foods containing high levels of potassium, including salt substitutes.

Laboratory tests

Periodic determination of serum electrolytes to detect possible electrolyte imbalance should be done at appropriate intervals, particularly in the elderly and those with significant renal or hepatic impairments.

Drug interactions

ACE inhibitors

Concomitant administration of ACE inhibitors with potassium-sparing diuretics has been associated with severe hyperkalemia.

Angiotensin II antagonists, aldosterone blockers, heparin, low molecular weight heparin, and other drugs known to cause hyperkalemia

Concomitant administration may lead to severe hyperkalemia.

Alcohol, barbiturates, or narcotics

Potentiation of orthostatic hypotension may occur.

Corticosteroids, ACTH

Intensified electrolyte depletion, particularly hypokalemia, may occur.

Pressor amines (e.g., norepinephrine)

ALDACTONE reduces the vascular responsiveness to norepinephrine. Therefore, caution should be exercised in the management of patients subjected to regional or general anesthesia while they are being treated with ALDACTONE.

Skeletal muscle relaxants, nondepolarizing (e.g., tubocurarine)

Possible increased responsiveness to the muscle relaxant may result.

Lithium

Lithium generally should not be given with diuretics. Diuretic agents reduce the renal clearance of lithium and add a high risk of lithium toxicity.

Nonsteroidal anti-inflammatory drugs (NSAIDs)

In some patients, the administration of an NSAID can reduce the diuretic, natriuretic, and antihypertensive effect of loop, potassium-sparing, and thiazide diuretics. Combination of NSAIDs, e.g., indomethacin, with potassium-sparing diuretics has been associated with severe hyperkalemia. Therefore, when ALDACTONE and NSAIDs are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained.

Digoxin

ALDACTONE has been shown to increase the half-life of digoxin. This may result in increased serum digoxin levels and subsequent digitalis toxicity. It may be necessary to reduce the maintenance and digitalization doses when ALDACTONE is administered, and the patient should be carefully monitored to avoid over- or under-digitalization.

Cholestyramine

Hyperkalemic metabolic acidosis has been reported in patients given ALDACTONE concurrently with cholestyramine.

Drug/Laboratory test interactions

Several reports of possible interference with digoxin radioimmunoassay by ALDACTONE, or its metabolites, have appeared in the literature. Neither the extent nor the potential clinical significance of its interference (which may be assay-specific) has been fully established.

Carcinogenesis, mutagenesis, impairment of fertility

Orally administered ALDACTONE has been shown to be a tumorigen in dietary administration studies performed in rats, with its proliferative effects manifested on endocrine organs and the liver. In an 18-month study using doses of about 50, 150, and 500 mg/kg/day, there were statistically significant increases in benign adenomas of the thyroid and testes and, in male rats, a dose-related increase in proliferative changes in the liver (including hepatocytomegaly and hyperplastic nodules). In a 24-month study in which the same strain of rat was administered doses of about 10, 30, 100, and 150 mg ALDACTONE/kg/day, the range of proliferative effects included significant increases in hepatocellular adenomas and testicular interstitial cell tumors in males, and significant increases in thyroid follicular cell adenomas and carcinomas in both sexes. There was also a statistically significant, but not dose-related, increase in benign uterine endometrial stromal polyps in females.

A dose-related (above 20 mg/kg/day) incidence of myelocytic leukemia was observed in rats fed daily doses of potassium canrenoate (a compound chemically similar to ALDACTONE and whose primary metabolite, canrenone, is also a major product of ALDACTONE in man) for a period of one year. In two-year studies in the rat, oral administration of potassium canrenoate was associated with myelocytic leukemia and hepatic, thyroid, testicular, and mammary tumors.

Neither ALDACTONE nor potassium canrenoate produced mutagenic effects in tests using bacteria or yeast. In the absence of metabolic activation, neither ALDACTONE nor potassium canrenoate has been shown to be mutagenic in mammalian tests in vitro. In the presence of metabolic activation, ALDACTONE has been reported to be negative in some mammalian mutagenicity tests in vitro and inconclusive (but slightly positive) for mutagenicity in other mammalian tests in vitro. In the presence of metabolic activation, potassium canrenoate has been reported to test positive for mutagenicity in some mammalian tests in vitro, inconclusive in others, and negative in still others.

In a three-litter reproduction study in which female rats received dietary doses of 15 and 50 mg ALDACTONE/kg/day, there were no effects on mating and fertility, but there was a small increase in incidence of stillborn pups at 50 mg/kg/day. When injected into female rats (100 mg/kg/day for 7 days, i.p.), ALDACTONE was found to increase the length of the estrous cycle by prolonging diestrus during treatment and inducing constant diestrus during a two-week post-treatment observation period. These effects were associated with retarded ovarian follicle development and a reduction in circulating estrogen levels, which would be expected to impair mating, fertility, and fecundity. ALDACTONE (100 mg/kg/day), administered i.p. to female mice during a two-week cohabitation period with untreated males, decreased the number of mated mice that conceived (effect shown to be caused by an inhibition of ovulation) and decreased the number of implanted embryos in those that became pregnant (effect shown to be caused by an inhibition of implantation), and at 200 mg/kg, also increased the latency period to mating.

Pregnancy

Teratogenic effects

Teratology studies with ALDACTONE have been carried out in mice and rabbits at doses of up to 20 mg/kg/day. On a body surface area basis, this dose in the mouse is substantially below the maximum recommended human dose and, in the rabbit, approximates the maximum recommended human dose. No teratogenic or other embryotoxic effects were observed in mice, but the 20 mg/kg dose caused an increased rate of resorption and a lower number of live fetuses in rabbits. Because of its antiandrogenic activity and the requirement of testosterone for male morphogenesis, ALDACTONE may have the potential for adversely affecting sex differentiation of the male during embryogenesis. When administered to rats at 200 mg/kg/day between gestation days 13 and 21 (late embryogenesis and fetal development), feminization of male fetuses was observed. Offspring exposed during late pregnancy to 50 and 100 mg/kg/day doses of ALDACTONE exhibited changes in the reproductive tract including dose-dependent decreases in weights of the ventral prostate and seminal vesicle in males, ovaries and uteri that were enlarged in females, and other indications of endocrine dysfunction, that persisted into adulthood. There are no adequate and well-controlled studies with ALDACTONE in pregnant women. ALDACTONE has known endocrine effects in animals including progestational and antiandrogenic effects. The antiandrogenic effects can result in apparent estrogenic side effects in humans, such as gynecomastia. Therefore, the use of ALDACTONE in pregnant women requires that the anticipated benefit be weighed against the possible hazards to the fetus.

Nursing mothers

Canrenone, a major (and active) metabolite of ALDACTONE, appears in human breast milk. Because ALDACTONE has been found to be tumorigenic in rats, a decision should be made whether to discontinue the drug, taking into account the importance of the drug to the mother. If use of the drug is deemed essential, an alternative method of infant feeding should be instituted.

Pediatric use

Safety and effectiveness in pediatric patients have not been established.

ADVERSE REACTIONS

The following adverse reactions have been reported and, within each category (body system), are listed in order of decreasing severity.

Digestive: Gastric bleeding, ulceration, gastritis, diarrhea and cramping, nausea, vomiting.

Reproductive: Gynecomastia (see Precautions), inability to achieve or maintain erection, irregular menses or amenorrhea, postmenopausal bleeding, breast pain. Carcinoma of the breast has been reported in patients taking ALDACTONE but a cause and effect relationship has not been established.

Hematologic: Leukopenia (including agranulocytosis), thrombocytopenia.

Hypersensitivity: Fever, urticaria, maculopapular or erythematous cutaneous eruptions, anaphylactic reactions, vasculitis.

Metabolism: Hyperkalemia, electrolyte disturbances (see Warnings and Precautions).

Musculoskeletal: Leg cramps.

Nervous system /psychiatric: Lethargy, mental confusion, ataxia, dizziness, headache, drowsiness.

Liver / biliary: A very few cases of mixed cholestatic/hepatocellular toxicity, with one reported fatality, have been reported with ALDACTONE administration.

Renal: Renal dysfunction (including renal failure).

Skin: Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN), drug rash with eosinophilia and systemic symptoms (DRESS), alopecia, pruritis.

INDICATIONS AND USAGE

ALDACTONE (spironolactone) is indicated in the management of:

Primary hyperaldosteronism for:

Establishing the diagnosis of primary hyperaldosteronism by therapeutic trial.

Short-term preoperative treatment of patients with primary hyperaldosteronism.

Long-term maintenance therapy for patients with discrete aldosterone-producing adrenal adenomas who are judged to be poor operative risks or who decline surgery.

Long-term maintenance therapy for patients with bilateral micro or macronodular adrenal hyperplasia (idiopathic hyperaldosteronism).

Edematous conditions for patients with:

Congestive heart failure

For the management of edema and sodium retention when the patient is only partially responsive to, or is intolerant of, other therapeutic measures. ALDACTONE is also indicated for patients with congestive heart failure taking digitalis when other therapies are considered inappropriate.

Cirrhosis of the liver accompanied by edema and/or ascites

Aldosterone levels may be exceptionally high in this condition. ALDACTONE is indicated for maintenance therapy together with bed rest and the restriction of fluid and sodium.

Nephrotic syndrome

For nephrotic patients when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics do not provide an adequate response.

Essential hypertension

ALDACTONE is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

Usually in combination with other drugs, ALDACTONE is indicated for patients who cannot be treated adequately with other agents or for whom other agents are considered inappropriate.

Hypokalemia

For the treatment of patients with hypokalemia when other measures are considered inappropriate or inadequate. ALDACTONE is also indicated for the prophylaxis of hypokalemia in patients taking digitalis when other measures are considered inadequate or inappropriate.

Severe heart failure (NYHA class III – IV)

To increase survival, and to reduce the need for hospitalization for heart failure when used in addition to standard therapy.

Usage in Pregnancy

The routine use of diuretics in an otherwise healthy woman is inappropriate and exposes mother and fetus to unnecessary hazard. Diuretics do not prevent development of toxemia of pregnancy, and there is no satisfactory evidence that they are useful in the treatment of developing toxemia.

Edema during pregnancy may arise from pathologic causes or from the physiologic and mechanical consequences of pregnancy.

ALDACTONE is indicated in pregnancy when edema is due to pathologic causes just as it is in the absence of pregnancy (however, see Precautions: Pregnancy). Dependent edema in pregnancy, resulting from restriction of venous return by the expanded uterus, is properly treated through elevation of the lower extremities and use of support hose; use of diuretics to lower intravascular volume in this case is unsupported and unnecessary. There is hypervolemia during normal pregnancy which is not harmful to either the fetus or the mother (in the absence of cardiovascular disease), but which is associated with edema, including generalized edema, in the majority of pregnant women. If this edema produces discomfort, increased recumbency will often provide relief. In rare instances, this edema may cause extreme discomfort that is not relieved by rest. In these cases, a short course of diuretics may provide relief and may be appropriate.

ALTACE® Capsules (ramipril)

These highlights do not include all the information needed to use ALTACE Capsules safety and effectively. See full prescribing information for ALTACE Capsules.

WARNING: FETAL TOXICITY

  • When pregnancy is detected, discontinue ALTACE as soon as possible (5.6).
  • Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus (5.6).

4 CONTRAINDICATIONS

ALTACE is contraindicated in patients who are hypersensitive to this product or any other ACE inhibitor (e.g., a patient who has experienced angioedema during therapy with any other ACE inhibitor).

ALTACE is contraindicated in combination with a neprilysin inhibitor (e.g., sacubitril). Do not administer ALTACE within 36 hours of switching to or from sacubitril/valsartan, a neprilysin inhibitor [see Warnings and Precautions (5.1)].

Do not co-administer ALTACE with aliskiren:

  • in patients with diabetes

5 WARNINGS AND PRECAUTIONS

5.1 Anaphylactoid and Possibly Related Reactions

Presumably because drugs that act directly on the renin-angiotensin-aldosterone system (e.g., ACE inhibitors) affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving these drugs (including ALTACE) may be subject to a variety of adverse reactions, some of them serious.

Angioedema

Head and Neck Angioedema

Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor.

Angioedema of the face, extremities, lips, tongue, glottis, and larynx has been reported in patients treated with ACE inhibitors. Angioedema associated with laryngeal edema can be fatal. If laryngeal stridor or angioedema of the face, tongue, or glottis occurs, discontinue treatment with ALTACE and institute appropriate therapy immediately. Where there is involvement of the tongue, glottis, or larynx likely to cause airway obstruction, administer appropriate therapy (e.g., subcutaneous epinephrine solution 1:1000 [0.3 mL to 0.5 mL]) promptly [see Adverse Reactions (6)].

In considering the use of ALTACE, note that in controlled clinical trials ACE inhibitors cause a higher rate of angioedema in Black patients than in non-Black patients.

In a large U.S. post-marketing study, angioedema (defined as reports of angio, face, larynx, tongue, or throat edema) was reported in 3/1523 (0.20%) Black patients and in 8/8680 (0.09%) non-Black patients. These rates were not different statistically.

Patients taking concomitant mammalian target of rapamycin (mTOR) inhibitor (e.g. temsirolimus) therapy or a neprilysin inhibitor may be at increased risk for angioedema [see Drug Interactions (7.7)].

Intestinal Angioedema

Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Include intestinal angioedema in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.

Anaphylactoid Reactions During Desensitization

Two patients undergoing desensitizing treatment with hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent rechallenge.

Anaphylactoid Reactions During Membrane Exposure

Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.

5.2 Hepatic Failure and Impaired Liver Function

Rarely, ACE inhibitors, including ALTACE, have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and sometimes death. The mechanism of this syndrome is not understood. Discontinue ALTACE if patient develops jaundice or marked elevations of hepatic enzymes.

As ramipril is primarily metabolized by hepatic esterases to its active moiety, ramiprilat, patients with impaired liver function could develop markedly elevated plasma levels of ramipril. No formal pharmacokinetic studies have been carried out in hypertensive patients with impaired liver function.

5.3 Renal Impairment

As a consequence of inhibiting the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals. In patients with severe congestive heart failure whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with ACE inhibitors, including ALTACE, may be associated with oliguria or progressive azotemia and rarely with acute renal failure or death.

In hypertensive patients with unilateral or bilateral renal artery stenosis, increases in blood urea nitrogen and serum creatinine may occur. Experience with another ACE inhibitor suggests that these increases would be reversible upon discontinuation of ALTACE and/or diuretic therapy. In such patients, monitor renal function during the first few weeks of therapy. Some hypertensive patients with no apparent pre-existing renal vascular disease have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when ALTACE has been given concomitantly with a diuretic. This is more likely to occur in patients with pre-existing renal impairment. Dosage reduction of ALTACE and/or discontinuation of the diuretic may be required.

5.4 Neutropenia and Agranulocytosis

In rare instances, treatment with ACE inhibitors may be associated with mild reductions in red blood cell count and hemoglobin content, blood cell or platelet counts. In isolated cases, agranulocytosis, pancytopenia, and bone marrow depression may occur. Hematological reactions to ACE inhibitors are more likely to occur in patients with collagen-vascular disease (e.g., systemic lupus erythematosus, scleroderma) and renal impairment. Consider monitoring white blood cell counts in patients with collagen-vascular disease, especially if the disease is associated with impaired renal function.

5.5 Hypotension

General Considerations

ALTACE can cause symptomatic hypotension, after either the initial dose or a later dose when the dosage has been increased. Like other ACE inhibitors, ALTACE, has been only rarely associated with hypotension in uncomplicated hypertensive patients. Symptomatic hypotension is most likely to occur in patients who have been volume- and/or salt-depleted as a result of prolonged diuretic therapy, dietary salt restriction, dialysis, diarrhea, or vomiting. Correct volume- and salt-depletion before initiating therapy with ALTACE.

If excessive hypotension occurs, place the patient in a supine position and, if necessary, treat with intravenous infusion of physiological saline. ALTACE treatment usually can be continued following restoration of blood pressure and volume.

Heart Failure Post-Myocardial Infarction

In patients with heart failure post-myocardial infarction who are currently being treated with a diuretic, symptomatic hypotension occasionally can occur following the initial dose of ALTACE. If the initial dose of 2.5 mg ALTACE cannot be tolerated, use an initial dose of 1.25 mg ALTACE to avoid excessive hypotension. Consider reducing the dose of concomitant diuretic to decrease the incidence of hypotension.

Congestive Heart Failure

In patients with congestive heart failure, with or without associated renal insufficiency, ACE inhibitor therapy may cause excessive hypotension, which may be associated with oliguria or azotemia and rarely, with acute renal failure and death. In such patients, initiate ALTACE therapy under close medical supervision and follow patients closely for the first 2 weeks of treatment and whenever the dose of ALTACE or diuretic is increased.

Surgery and Anesthesia

In patients undergoing surgery or during anesthesia with agents that produce hypotension, ramipril may block angiotensin II formation that would otherwise occur secondary to compensatory renin release. Hypotension that occurs as a result of this mechanism can be corrected by volume expansion.

5.6 Fetal Toxicity

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue ALTACE as soon as possible [see Use in Specific Populations (8.1)].

5.7 Dual Blockade of the Renin-Angiotensin System

Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function and electrolytes in patients on ALTACE and other agents that affect the RAS.

Telmisartan

The ONTARGET trial enrolled 25,620 patients >55 years old with atherosclerotic disease or diabetes with end-organ damage, randomized them to telmisartan only, ramipril only, or the combination, and followed them for a median of 56 months. Patients receiving the combination of telmisartan and ramipril did not obtain any benefit in the composite endpoint of cardiovascular death, MI, stroke and heart failure hospitalization compared to monotherapy, but experienced an increased incidence of clinically important renal dysfunction (death, doubling of serum creatinine, or dialysis) compared with groups receiving telmisartan alone or ramipril alone. Concomitant use of telmisartan and ramipril is not recommended.

Aliskiren

Do not co-administer aliskiren with ALTACE in patients with diabetes. Avoid concomitant use of aliskiren with ALTACE in patients with renal impairment (GFR <60 mL/min/1.73 m2).

5.8 Hyperkalemia

In clinical trials with ALTACE, hyperkalemia (serum potassium >5.7 mEq/L) occurred in approximately 1% of hypertensive patients receiving ALTACE. In most cases, these were isolated values, which resolved despite continued therapy. None of these patients were discontinued from the trials because of hyperkalemia. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of other drugs that raise serum potassium levels. Monitor serum potassium in such patients [see Drug Interactions (7.2)].

5.9 Cough

Presumably caused by inhibition of the degradation of endogenous bradykinin, persistent nonproductive cough has been reported with all ACE inhibitors, always resolving after discontinuation of therapy. Consider the possibility of angiotensin converting enzyme inhibitor induced-cough in the differential diagnosis of cough.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, the adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Hypertension

ALTACE has been evaluated for safety in over 4000 patients with hypertension; of these, 1230 patients were studied in U.S. controlled trials, and 1107 were studied in foreign controlled trials. Almost 700 of these patients were treated for at least one year. The overall incidence of reported adverse events was similar in ALTACE and placebo patients. The most frequent clinical side effects (possibly or probably related to study drug) reported by patients receiving ALTACE in placebo-controlled trials were: headache (5.4%), dizziness (2.2%), and fatigue or asthenia (2.0%), but only the last one was more common in ALTACE patients than in patients given placebo. Generally the side effects were mild and transient, and there was no relation to total dosage within the range of 1.25 mg–20 mg. Discontinuation of therapy because of a side effect was required in approximately 3% of U.S. patients treated with ALTACE. The most common reasons for discontinuation were: cough (1.0%), dizziness (0.5%), and impotence (0.4%).

Of observed side effects considered possibly or probably related to study drug that occurred in U.S. placebo-controlled trials in more than 1% of patients treated with ALTACE, only asthenia (fatigue) was more common on ALTACE than placebo (2% [n=13/651] vs. 1% [n=2/286], respectively).

In placebo-controlled trials, there was also an excess of upper respiratory infection and flu syndrome in the ALTACE group, not attributed at that time to ramipril. As these studies were carried out before the relationship of cough to ACE inhibitors was recognized, some of these events may represent ramipril-induced cough. In a later 1-year study, increased cough was seen in almost 12% of ALTACE patients, with about 4% of patients requiring discontinuation of treatment.

Reduction in the Risk of Myocardial Infarction, Stroke, and Death from Cardiovascular Causes

HOPE Study

Safety data in the Heart Outcomes Prevention Evaluation (HOPE) study were collected as reasons for discontinuation or temporary interruption of treatment. The incidence of cough was similar to that seen in the Acute Infarction Ramipril Efficacy (AIRE) trial. The rate of angioedema was the same as in previous clinical trials [see Warnings and Precautions (5.1)].

Table 1. Reasons for Discontinuation or Temporary Interruption of Treatment—HOPE Study
Placebo
(N=4652)
ALTACE
(N=4645)
Discontinuation at any time 32% 34%
Permanent discontinuation 28% 29%
Reasons for stopping
  Cough 2% 7%
  Hypotension or dizziness 1.5% 1.9%
  Angioedema 0.1% 0.3%

Heart Failure Post-Myocardial Infarction

AIRE Study

Adverse reactions (except laboratory abnormalities) considered possibly/probably related to study drug that occurred in more than 1% of patients and more frequently on ALTACE are shown below. The incidences are from the AIRE study. The follow-up time was between 6 and 46 months for this study.

Table 2. Percentage of Patients with Adverse Events Possibly/ Probably Related to Study Drug—Placebo-Controlled (AIRE) Mortality Study
Adverse Event Placebo
(N=982)
ALTACE
(N=1004)
Hypotension 5% 11%
Cough increased 4% 8%
Dizziness 3% 4%
Angina pectoris 2% 3%
Nausea 1% 2%
Postural hypotension 1% 2%
Syncope 1% 2%
Vomiting 0.5% 2%
Vertigo 0.7% 2%
Abnormal kidney function 0.5% 1%
Diarrhea 0.4% 1%

Other Adverse Reactions

Other adverse reactions reported in controlled clinical trials (in less than 1% of ALTACE patients), or rarer events seen in post-marketing experience, include the following (in some, a causal relationship to drug is uncertain):

Body as a whole: Anaphylactoid reactions [see Warnings and Precautions (5.1)].

Cardiovascular: Symptomatic hypotension (reported in 0.5% of patients in U.S. trials) [see Warnings and Precautions (5.5)], syncope, and palpitations.

Hematologic: Pancytopenia, hemolytic anemia, and thrombocytopenia.

Decreases in hemoglobin or hematocrit (a low value and a decrease of 5 g/dL or 5%, respectively) were rare, occurring in 0.4% of patients receiving ALTACE alone and in 1.5% of patients receiving ALTACE plus a diuretic.

Renal: Acute renal failure. Some hypertensive patients with no apparent pre-existing renal disease have developed minor, usually transient, increases in blood urea nitrogen and serum creatinine when taking ALTACE, particularly when ALTACE was given concomitantly with a diuretic [see Warnings and Precautions (5.3)].

Angioneurotic edema: Angioneurotic edema has been reported in 0.3% of patients in U.S. clinical trials of ALTACE [see Warnings and Precautions (5.1) ].

Gastrointestinal: Hepatic failure, hepatitis, jaundice, pancreatitis, abdominal pain (sometimes with enzyme changes suggesting pancreatitis), anorexia, constipation, diarrhea, dry mouth, dyspepsia, dysphagia, gastroenteritis, increased salivation, and taste disturbance.

Dermatologic: Apparent hypersensitivity reactions (manifested by urticaria, pruritus, or rash, with or without fever), photosensitivity, purpura, onycholysis, pemphigus, pemphigoid, erythema multiforme, toxic epidermal necrolysis, and Stevens-Johnson syndrome.

Neurologic and Psychiatric: Anxiety, amnesia, convulsions, depression, hearing loss, insomnia, nervousness, neuralgia, neuropathy, paresthesia, somnolence, tinnitus, tremor, vertigo, and vision disturbances.

Miscellaneous: As with other ACE inhibitors, a symptom complex has been reported which may include a positive ANA, an elevated erythrocyte sedimentation rate, arthralgia/arthritis, myalgia, fever, vasculitis, eosinophilia, photosensitivity, rash and other dermatologic manifestations. Additionally, as with other ACE inhibitors, eosinophilic pneumonitis has been reported.

Other: Arthralgia, arthritis, dyspnea, edema, epistaxis, impotence, increased sweating, malaise, myalgia, and weight gain.

6.2 Post-Marketing Experience

In addition to adverse reactions reported from clinical trials, there have been rare reports of hypoglycemia reported during ALTACE therapy when given to patients concomitantly taking oral hypoglycemic agents or insulin. The causal relationship is unknown.

6.3 Clinical Laboratory Test Findings

Creatinine and Blood Urea Nitrogen: Increases in creatinine levels occurred in 1.2% of patients receiving ALTACE alone, and in 1.5% of patients receiving ALTACE and a diuretic. Increases in blood urea nitrogen levels occurred in 0.5% of patients receiving ALTACE alone and in 3% of patients receiving ALTACE with a diuretic. None of these increases required discontinuation of treatment. Increases in these laboratory values are more likely to occur in patients with renal insufficiency or those pretreated with a diuretic and, based on experience with other ACE inhibitors, would be expected to be especially likely in patients with renal artery stenosis [see Warnings and Precautions (5.3)]. As ramipril decreases aldosterone secretion, elevation of serum potassium can occur. Use potassium supplements and potassium sparing diuretics with caution, and monitor the patient's serum potassium frequently [see Warnings and Precautions (5.8)].

Hemoglobin and Hematocrit: Decreases in hemoglobin or hematocrit (a low value and a decrease of 5 g/dL or 5%, respectively) were rare, occurring in 0.4% of patients receiving ALTACE alone and in 1.5% of patients receiving ALTACE plus a diuretic. No US patients discontinued treatment because of decreases in hemoglobin or hematocrit.

Other (causal relationships unknown): Clinically important changes in standard laboratory tests were rarely associated with ALTACE administration. Elevations of liver enzymes, serum bilirubin, uric acid, and blood glucose have been reported, as have cases of hyponatremia and scattered incidents of leucopenia, eosinophilia, and proteinuria. In US trials, less than 0.2% of patients discontinued treatment for laboratory abnormalities; all of these were cases of proteinuria or abnormal liver-function tests.

1 INDICATIONS AND USAGE

1.1 Hypertension

ALTACE is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including this drug.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

ALTACE may be used alone or in combination with thiazide diuretics.

1.2 Reduction in the Risk of Myocardial Infarction, Stroke, and Death from Cardiovascular Causes

ALTACE is indicated in patients 55 years or older at high risk of developing a major cardiovascular event because of a history of coronary artery disease, stroke, peripheral vascular disease, or diabetes that is accompanied by at least one other cardiovascular risk factor (hypertension, elevated total cholesterol levels, low HDL levels, cigarette smoking, or documented microalbuminuria), to reduce the risk of myocardial infarction, stroke, or death from cardiovascular causes. ALTACE can be used in addition to other needed treatment (such as antihypertensive, antiplatelet, or lipid-lowering therapy) [see Clinical Studies (14.2)].

1.3 Heart Failure Post-Myocardial Infarction

ALTACE is indicated in stable patients who have demonstrated clinical signs of congestive heart failure within the first few days after sustaining acute myocardial infarction. Administration of ALTACE to such patients has been shown to decrease the risk of death (principally cardiovascular death) and to decrease the risks of failure-related hospitalization and progression to severe/resistant heart failure [see Clinical Studies (14.3)].

CADUET® (amlodipine besilate, atorvastatin calcium)

These highlights do not include all the information needed to use CADUET safety and effectively. See full prescribing information for CADUET.

4 CONTRAINDICATIONS

4.1 Active Liver Disease

Atorvastatin is contraindicated in patients with active liver disease, which may include unexplained persistent elevations in hepatic transaminase levels [see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3)].

4.2 Pregnancy

Atorvastatin is contraindicated in women who are pregnant or may become pregnant. Atorvastatin may cause fetal harm when administered to a pregnant woman. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia.

There are no adequate and well-controlled studies of atorvastatin use during pregnancy; however, in rare reports congenital anomalies were observed following intrauterine exposure to statins. In rat and rabbit animal reproduction studies, atorvastatin revealed no evidence of teratogenicity. CADUET should be administered to women of childbearing age only when such patients are highly unlikely to conceive and have been informed of the potential hazard. If the patient becomes pregnant while taking this drug, therapy should be discontinued immediately and the patient apprised of the potential hazard to the fetus [see Use in Specific Populations (8.1)].

4.3 Nursing Mothers

It is not known whether atorvastatin or amlodipine are excreted into human milk; however, a small amount of another statin does pass into breast milk. Because statins have the potential for serious adverse reactions in nursing infants, women taking CADUET should not breastfeed their infants [see Use in Specific Populations (8.3)].

5 WARNINGS AND PRECAUTIONS

5.1 Myopathy and Rhabdomyolysis

Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with atorvastatin and with other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects.

Atorvastatin, like other statins, occasionally causes myopathy, defined as muscle aches or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values > 10 times upper limit of normal [ULN]. The concomitant use of higher doses of atorvastatin with certain drugs such as cyclosporine and strong CYP3A4 inhibitors (e.g., clarithromycin, itraconazole, and HIV protease inhibitors) increases the risk of myopathy/rhabdomyolysis.

There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents.

Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, or marked elevation of CPK. Patients should be advised to report promptly unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing CADUET. CADUET therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected.

The risk of myopathy during treatment with statins is increased with concurrent administration of cyclosporine, fibric acid derivatives, erythromycin, clarithromycin, the hepatitis C protease inhibitor telaprevir, combinations of HIV protease inhibitors, including saquinavir plus ritonavir, lopinavir plus ritonavir, tipranavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, and fosamprenavir plus ritonavir, niacin, or azole antifungals. Physicians considering combined therapy with CADUET and fibric acid derivatives, erythromycin, clarithromycin, a combination of saquinavir plus ritonavir, lopinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, azole antifungals, or lipid-modifying doses of niacin should carefully weigh the potential benefits and risks and should carefully monitor patients for any signs or symptoms of muscle pain, tenderness, or weakness, particularly during the initial months of therapy and during any periods of upward dosage titration of either drug. Lower starting and maintenance doses of atorvastatin should be considered when taken concomitantly with the aforementioned drugs [see Drug Interactions (7)]. Periodic creatine phosphokinase (CPK) determinations may be considered in such situations, but there is no assurance that such monitoring will prevent the occurrence of severe myopathy.

Prescribing recommendations for interacting agents are summarized in Table 2 [see Dosage and Administration (2), Drug Interactions (7), and Clinical Pharmacology (12.3)].

Table 2. Atorvastatin Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis
*
Use with caution and with the lowest dose necessary (12.3)
Cyclosporine, HIV protease inhibitors (tipranavir plus ritonavir), hepatitis C protease inhibitor (telaprevir) Avoid atorvastatin
HIV protease inhibitor (lopinavir plus ritonavir) Use with caution and lowest dose necessary
Clarithromycin, itraconazole,
HIV protease inhibitors (saquinavir plus ritonavir*, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir)
Do not exceed 20 mg atorvastatin daily
HIV protease inhibitor (nelfinavir)
Hepatitis C protease inhibitor (boceprevir)
Do not exceed 40 mg atorvastatin daily

Cases of myopathy, including rhabdomyolysis, have been reported with atorvastatin co-administered with colchicine, and caution should be exercised when prescribing atorvastatin with colchicine [see Drug Interactions (7.13)].

Withhold or discontinue in any patient with an acute, serious condition suggestive of a myopathy or having a risk factor predisposing to the development of renal failure secondary to rhabdomyolysis (e.g., severe acute infection; hypotension; major surgery; trauma; severe metabolic, endocrine, and electrolyte disorders; and uncontrolled seizures).

5.2 Liver Dysfunction

Statins, like atorvastatin, and some other lipid-lowering therapies, have been associated with biochemical abnormalities of liver function. Persistent elevations (> 3 times the upper limit of normal [ULN] occurring on 2 or more occasions) in serum transaminases occurred in 0.7% of patients who received atorvastatin in clinical trials. The incidence of these abnormalities was 0.2%, 0.2%, 0.6%, and 2.3% for 10, 20, 40, and 80 mg, respectively.

One patient in clinical trials with atorvastatin developed jaundice. Increases in liver function tests (LFT) in other patients were not associated with jaundice or other clinical signs or symptoms. Upon dose reduction, drug interruption, or discontinuation, transaminase levels returned to or near pretreatment levels without sequelae. Eighteen of 30 patients with persistent LFT elevations continued treatment with a reduced dose of atorvastatin.

It is recommended that liver enzyme tests be obtained prior to initiating therapy with atorvastatin and repeated as clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including atorvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with CADUET, promptly interrupt therapy. If an alternate etiology is not found, do not restart CADUET.

Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of CADUET [see Contraindications (4.1)].

5.3 Increased Angina and Myocardial Infarction

Worsening angina and acute myocardial infarction can develop after starting or increasing the dose of amlodipine, particularly in patients with severe obstructive coronary artery disease.

5.4 Hypotension

Symptomatic hypotension is possible with use of amlodipine, particularly in patients with severe aortic stenosis. Because of the gradual onset of action, acute hypotension is unlikely.

5.5 Endocrine Function

Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including atorvastatin.

Statins interfere with cholesterol synthesis and theoretically might blunt adrenal and/or gonadal steroid production. Clinical studies have shown that atorvastatin does not reduce basal plasma cortisol concentration or impair adrenal reserve. The effects of statins on male fertility have not been studied in adequate numbers of patients. The effects, if any, on the pituitary-gonadal axis in premenopausal women are unknown. Avoid a statin with drugs that may decrease the levels or activity of endogenous steroid hormones such as ketoconazole, spironolactone, and cimetidine.

5.6 CNS Toxicity

Brain hemorrhage was seen in a female dog treated with atorvastatin for 3 months at 120 mg/kg/day. Brain hemorrhage and optic nerve vacuolation were seen in another female dog that was sacrificed in moribund condition after 11 weeks of escalating doses up to 280 mg/kg/day. The 120 mg/kg dose resulted in a systemic exposure approximately 16 times the human plasma area-under-the-curve (AUC, 0–24 hours) based on the maximum human dose of 80 mg/day. A single tonic convulsion was seen in each of 2 male dogs (one treated at 10 mg/kg/day and one at 120 mg/kg/day) in a 2-year study. No CNS lesions have been observed in mice after chronic treatment for up to 2 years at doses up to 400 mg/kg/day or in rats at doses up to 100 mg/kg/day. These doses were 6 to 11 times (mouse) and 8 to 16 times (rat) the human AUC (0–24) based on the maximum recommended human dose of 80 mg/day.

CNS vascular lesions, characterized by perivascular hemorrhages, edema, and mononuclear cell infiltration of perivascular spaces, have been observed in dogs treated with other statins. A chemically similar drug in this class produced optic nerve degeneration (Wallerian degeneration of retinogeniculate fibers) in clinically normal dogs in a dose-dependent fashion at a dose that produced plasma drug levels about 30 times higher than the mean drug level in humans taking the highest recommended dose.

5.7 Hemorrhagic Stroke

In a post-hoc analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study where atorvastatin 80 mg vs. placebo was administered in 4,731 subjects without CHD who had a stroke or TIA within the preceding 6 months, a higher incidence of hemorrhagic stroke was seen in the atorvastatin 80 mg group compared to placebo (55, 2.3% atorvastatin vs. 33, 1.4% placebo; HR: 1.68, 95% CI: 1.09, 2.59; p=0.0168). The incidence of fatal hemorrhagic stroke was similar across treatment groups (17 vs. 18 for the atorvastatin and placebo groups, respectively). The incidence of non-fatal hemorrhagic stroke was significantly higher in the atorvastatin group (38, 1.6%) as compared to the placebo group (16, 0.7%). Some baseline characteristics, including hemorrhagic and lacunar stroke on study entry, were associated with a higher incidence of hemorrhagic stroke in the atorvastatin group [see Adverse Reactions (6.1)].

6 ADVERSE REACTIONS

The following serious adverse reactions are discussed in greater detail in other sections of the label:
Rhabdomyolysis and myopathy [see Warnings and Precautions (5.1)]
Liver enzyme abnormalities [see Warnings and Precautions (5.2)]

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

CADUET

CADUET (amlodipine besylate/atorvastatin calcium) has been evaluated for safety in 1,092 patients in double-blind placebo-controlled studies treated for co-morbid hypertension and dyslipidemia. In general, treatment with CADUET was well tolerated. For the most part, adverse reactions have been mild or moderate in severity. In clinical trials with CADUET, no adverse reactions peculiar to this combination have been observed. Adverse reactions are similar in terms of nature, severity, and frequency to those reported previously with amlodipine and atorvastatin.

The following information is based on the clinical experience with amlodipine and atorvastatin.

Amlodipine

Amlodipine has been evaluated for safety in more than 11,000 patients in U.S. and foreign clinical trials. In general, treatment with amlodipine was well tolerated at doses up to 10 mg daily. Most adverse reactions reported during therapy with amlodipine were of mild or moderate severity. In controlled clinical trials directly comparing amlodipine (N=1,730) at doses up to 10 mg to placebo (N=1,250), discontinuation of amlodipine because of adverse reactions was required in only about 1.5% of patients and was not significantly different from placebo (about 1%). The most commonly reported side effects more frequent than placebo are dizziness and edema. The incidence (%) of side effects that occurred in a dose-related manner are as follows:

Amlodipine
2.5 mg 5 mg 10 mg Placebo
N=275 N=296 N=268 N=520
Edema 1.8 3.0 10.8 0.6
Dizziness 1.1 3.4 3.4 1.5
Flushing 0.7 1.4 2.6 0.0
Palpitations 0.7 1.4 4.5 0.6

Other adverse reactions that were not clearly dose related but were reported at an incidence greater than 1.0% in placebo-controlled clinical trials include the following:

Amlodipine (%) Placebo (%)
(N=1730) (N=1250)
Fatigue 4.5 2.8
Nausea 2.9 1.9
Abdominal Pain 1.6 0.3
Somnolence 1.4 0.6

Edema, flushing, palpitations, and somnolence appear to be more common in women than in men.

The following events occurred in < 1% but > 0.1% of patients treated with amlodipine in controlled clinical trials or under conditions of open trials or marketing experience where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:

Cardiovascular: arrhythmia (including ventricular tachycardia and atrial fibrillation), bradycardia, chest pain, peripheral ischemia, syncope, tachycardia, vasculitis.

Central and Peripheral Nervous System: hypoesthesia, neuropathy peripheral, paresthesia, tremor, vertigo.

Gastrointestinal: anorexia, constipation, dysphagia, diarrhea, flatulence, pancreatitis, vomiting, gingival hyperplasia.

General: allergic reaction, asthenia,1 back pain, hot flushes, malaise, pain, rigors, weight gain, weight decrease.

Musculoskeletal System: arthralgia, arthrosis, muscle cramps,1 myalgia.

Psychiatric: sexual dysfunction (male1 and female), insomnia, nervousness, depression, abnormal dreams, anxiety, depersonalization.

Respiratory System: dyspnea,1 epistaxis.

Skin and Appendages: angioedema, erythema multiforme, pruritus,1 rash,1 rash erythematous, rash maculopapular.

Special Senses: abnormal vision, conjunctivitis, diplopia, eye pain, tinnitus.

Urinary System: micturition frequency, micturition disorder, nocturia.

Autonomic Nervous System: dry mouth, sweating increased.

Metabolic and Nutritional: hyperglycemia, thirst.

Hemopoietic: leukopenia, purpura, thrombocytopenia.

Amlodipine therapy has not been associated with clinically significant changes in routine laboratory tests. No clinically relevant changes were noted in serum potassium, serum glucose, total triglycerides, total cholesterol, HDL cholesterol, uric acid, blood urea nitrogen, or creatinine.


1
These events occurred in less than 1% in placebo-controlled trials, but the incidence of these side effects was between 1% and 2% in all multiple dose studies.

Atorvastatin

In the atorvastatin placebo-controlled clinical trial database of 16,066 patients (8,755 atorvastatin vs. 7,311 placebo; age range 10–93 years, 39% women, 91% Caucasians, 3% Blacks, 2% Asians, 4% other) with a median treatment duration of 53 weeks, 9.7% of patients on atorvastatin and 9.5% of the patients on placebo discontinued because of adverse reactions regardless of causality. The five most common adverse reactions in patients treated with atorvastatin that led to treatment discontinuation and occurred at a rate greater than placebo were: myalgia (0.7%), diarrhea (0.5%), nausea (0.4%), alanine aminotransferase increase (0.4%), and hepatic enzyme increase (0.4%).

The most commonly reported adverse reactions (incidence ≥ 2% and greater than placebo) regardless of causality, in patients treated with atorvastatin in placebo-controlled trials (n=8,755) were: nasopharyngitis (8.3%), arthralgia (6.9%), diarrhea (6.8%), pain in extremity (6.0%), and urinary tract infection (5.7%).

Table 3 summarizes the frequency of clinical adverse reactions, regardless of causality, reported in ≥ 2% and at a rate greater than placebo in patients treated with atorvastatin (n=8,755), from seventeen placebo-controlled trials.

Table 3. Clinical Adverse Reactions Occurring in ≥ 2% in Patients Treated with Any Dose of Atorvastatin and at an Incidence Greater than Placebo Regardless of Causality (% of Patients)
Adverse Reaction* Any dose
N=8755
10 mg
N=3908
20 mg
N=188
40 mg
N=604
80 mg
N=4055
Placebo
N=7311
*
Adverse Reaction ≥ 2% in any dose greater than placebo.
Nasopharyngitis 8.3 12.9 5.3 7.0 4.2 8.2
Arthralgia 6.9 8.9 11.7 10.6 4.3 6.5
Diarrhea 6.8 7.3 6.4 14.1 5.2 6.3
Pain in extremity 6.0 8.5 3.7 9.3 3.1 5.9
Urinary tract infection 5.7 6.9 6.4 8.0 4.1 5.6
Dyspepsia 4.7 5.9 3.2 6.0 3.3 4.3
Nausea 4.0 3.7 3.7 7.1 3.8 3.5
Musculoskeletal pain 3.8 5.2 3.2 5.1 2.3 3.6
Muscle spasms 3.6 4.6 4.8 5.1 2.4 3.0
Myalgia 3.5 3.6 5.9 8.4 2.7 3.1
Insomnia 3.0 2.8 1.1 5.3 2.8 2.9
Pharyngolaryngeal pain 2.3 3.9 1.6 2.8 0.7 2.1

Other adverse reactions reported in placebo-controlled studies include:

Body as a whole: malaise, pyrexia; Digestive system: abdominal discomfort, eructation, flatulence, hepatitis, cholestasis; Musculoskeletal system: musculoskeletal pain, muscle fatigue, neck pain, joint swelling; Metabolic and nutritional system: transaminases increase, liver function test abnormal, blood alkaline phosphatase increase, creatine phosphokinase increase, hyperglycemia; Nervous system: nightmare; Respiratory system: epistaxis; Skin and appendages: urticaria; Special senses: vision blurred, tinnitus; Urogenital system: white blood cells urine positive.

Treating to New Targets Study (TNT)

In TNT [see Clinical Studies (14.6)] involving 10,001 subjects (age range 29–78 years, 19% women; 94.1% Caucasians, 2.9% Blacks, 1.0% Asians, 2.0% other) with clinically evident CHD treated with atorvastatin 10 mg daily (n=5,006) or atorvastatin 80 mg daily (n=4,995), serious adverse reactions and discontinuations because of adverse reactions increased with dose. Persistent transaminase elevations (≥ 3 × ULN twice within 4–10 days) occurred in 62 (1.3%) individuals with atorvastatin 80 mg and in nine (0.2%) individuals with atorvastatin 10 mg. Elevations of CK (≥ 10 × ULN) were low overall, but were higher in the high-dose atorvastatin treatment group (13, 0.3%) compared to the low-dose atorvastatin group (6, 0.1%).

Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL)

In SPARCL involving 4,731 subjects (age range 21–92 years, 40% women; 93.3% Caucasians, 3.0% Blacks, 0.6% Asians, 3.1% other) without clinically evident CHD but with a stroke or transient ischemic attack (TIA) within the previous 6 months treated with atorvastatin 80 mg (n=2,365) or placebo (n=2,366) for a median follow-up of 4.9 years, there was a higher incidence of persistent hepatic transaminase elevations (≥ 3 × ULN twice within 4–10 days) in the atorvastatin group (0.9%) compared to placebo (0.1%). Elevations of CK (>10 × ULN) were rare, but were higher in the atorvastatin group (0.1%) compared to placebo (0.0%). Diabetes was reported as an adverse reaction in 144 subjects (6.1%) in the atorvastatin group and 89 subjects (3.8%) in the placebo group [see Warnings and Precautions (5.5)].

In a post-hoc analysis, atorvastatin 80 mg reduced the incidence of ischemic stroke (218/2365, 9.2% vs. 274/2366, 11.6%) and increased the incidence of hemorrhagic stroke (55/2365, 2.3% vs. 33/2366, 1.4%) compared to placebo. The incidence of fatal hemorrhagic stroke was similar between groups (17 atorvastatin vs. 18 placebo). The incidence of non-fatal hemorrhagic strokes was significantly greater in the atorvastatin group (38 non-fatal hemorrhagic strokes) as compared to the placebo group (16 non-fatal hemorrhagic strokes). Subjects who entered the study with a hemorrhagic stroke appeared to be at increased risk for hemorrhagic stroke [7 (16%) atorvastatin vs. 2 (4%) placebo].

There were no significant differences between the treatment groups for all-cause mortality: 216 (9.1%) in the atorvastatin 80 mg/day group vs. 211 (8.9%) in the placebo group. The proportions of subjects who experienced cardiovascular death were numerically smaller in the atorvastatin 80 mg group (3.3%) than in the placebo group (4.1%). The proportions of subjects who experienced non-cardiovascular death were numerically larger in the atorvastatin 80 mg group (5.0%) than in the placebo group (4.0%).

Pediatrics: In a 26-week controlled study in boys and postmenarchal girls (n=140, 31% female; 92% Caucasians, 1.6% Blacks, 1.6% Asians, 4.8% other), the safety and tolerability profile of atorvastatin 10 to 20 mg daily was generally similar to that of placebo [see Clinical Studies (14.11) and Use in Specific Populations (8.4)].

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval of amlodipine and atorvastatin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Amlodipine

The following postmarketing event has been reported infrequently where a causal relationship is uncertain: gynecomastia. In postmarketing experience, jaundice and hepatic enzyme elevations (mostly consistent with cholestasis or hepatitis), in some cases severe enough to require hospitalization, have been reported in association with use of amlodipine.

Postmarketing reporting has also revealed a possible association between extrapyramidal disorder and amlodipine.

Amlodipine has been used safely in patients with chronic obstructive pulmonary disease, well-compensated congestive heart failure, coronary artery disease, peripheral vascular disease, diabetes mellitus, and abnormal lipid profiles.

Atorvastatin

Adverse reactions associated with atorvastatin therapy reported since market introduction that are not listed above, regardless of causality assessment, include the following: anaphylaxis, angioneurotic edema, bullous rashes (including erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis), rhabdomyolysis, myositis, fatigue, tendon rupture, fatal and non-fatal hepatic failure, dizziness, depression, peripheral neuropathy, and pancreatitis.

There have been rare reports of immune-mediated necrotizing myopathy associated with statin use [see Warnings and Precautions (5.1)].

There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).

1 INDICATIONS AND USAGE

CADUET (amlodipine and atorvastatin) is indicated in patients for whom treatment with both amlodipine and atorvastatin is appropriate.

Amlodipine

1.1 Hypertension

Amlodipine is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including amlodipine.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

Amlodipine may be used alone or in combination with other antihypertensive agents.

1.2 Coronary Artery Disease (CAD)

Chronic Stable Angina

Amlodipine is indicated for the symptomatic treatment of chronic stable angina. Amlodipine may be used alone or in combination with other antianginal agents.

Vasospastic Angina (Prinzmetal's or Variant Angina)

Amlodipine is indicated for the treatment of confirmed or suspected vasospastic angina. Amlodipine may be used as monotherapy or in combination with other antianginal agents.

Angiographically Documented CAD

In patients with recently documented CAD by angiography and without heart failure or an ejection fraction < 40%, amlodipine is indicated to reduce the risk of hospitalization for angina and to reduce the risk of a coronary revascularization procedure.

Atorvastatin

Therapy with HMG CoA-reductase inhibitors (lipid-altering agents) should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease from hypercholesterolemia. Drug therapy is recommended as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. In patients with coronary heart disease (CHD) or multiple risk factors for CHD, atorvastatin can be started simultaneously with diet restriction.

1.3 Prevention of Cardiovascular Disease (CVD)

In adult patients without clinically evident coronary heart disease, but with multiple risk factors for coronary heart disease such as age, smoking, hypertension, low HDL-cholesterol (HDL-C), or a family history of early coronary heart disease, atorvastatin is indicated to:

  • Reduce the risk of myocardial infarction (MI)
  • Reduce the risk of stroke
  • Reduce the risk for revascularization procedures and angina

In patients with type 2 diabetes, and without clinically evident coronary heart disease, but with multiple risk factors for coronary heart disease such as retinopathy, albuminuria, smoking, or hypertension, atorvastatin is indicated to:

  • Reduce the risk of myocardial infarction
  • Reduce the risk of stroke

In patients with clinically evident coronary heart disease, atorvastatin is indicated to:

  • Reduce the risk of non-fatal myocardial infarction
  • Reduce the risk of fatal and non-fatal stroke
  • Reduce the risk for revascularization procedures
  • Reduce the risk of hospitalization for congestive heart failure (CHF)
  • Reduce the risk of angina

1.4 Hyperlipidemia

Atorvastatin is indicated:

  • As an adjunct to diet to reduce elevated total cholesterol (total-C) , LDL-cholesterol (LDL-C), apolipoprotein B (apo B), and triglycerides (TG) levels and to increase HDL-C in patients with primary hypercholesterolemia (heterozygous familial and nonfamilial) and mixed dyslipidemia (Fredrickson Types IIa and IIb)
  • As an adjunct to diet for the treatment of patients with elevated serum TG levels (Fredrickson Type IV);
  • For the treatment of patients with primary dysbetalipoproteinemia (Fredrickson Type III) who do not respond adequately to diet
  • To reduce total-C and LDL-C in patients with homozygous familial hypercholesterolemia as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) or if such treatments are unavailable
  • As an adjunct to diet to reduce total-C, LDL-C, and apo B levels in boys and postmenarchal girls, 10 to 17 years of age, with heterozygous familial hypercholesterolemia if after an adequate trial of diet therapy the following findings are present:
    1. LDL-C remains ≥ 190 mg/dL or
    2. LDL-C remains ≥ 160 mg/dL and:
      • there is a positive family history of premature CVD or
      • two or more other CVD risk factors are present in the pediatric patient

1.5 Limitations of Use

Atorvastatin has not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V).

CALAN® (verapamil hydrochloride tablets)

These highlights do not include all the information needed to use CALAN safety and effectively. See full prescribing information for CALAN.

CONTRAINDICATIONS

Verapamil HCl tablets are contraindicated in:

  1. Severe left ventricular dysfunction (see WARNINGS)
  2. Hypotension (systolic pressure less than 90 mm Hg) or cardiogenic shock
  3. Sick sinus syndrome (except in patients with a functioning artificial ventricular pacemaker)
  4. Second- or third-degree AV block (except in patients with a functioning artificial ventricular pacemaker)
  5. Patients with atrial flutter or atrial fibrillation and an accessory bypass tract (eg, Wolff-Parkinson-White, Lown-Ganong-Levine syndromes) (see WARNINGS)
  6. Patients with known hypersensitivity to verapamil hydrochloride

WARNINGS

Heart failure

Verapamil has a negative inotropic effect, which in most patients is compensated by its afterload reduction (decreased systemic vascular resistance) properties without a net impairment of ventricular performance. In clinical experience with 4,954 patients, 87 (1.8%) developed congestive heart failure or pulmonary edema. Verapamil should be avoided in patients with severe left ventricular dysfunction (eg, ejection fraction less than 30%) or moderate to severe symptoms of cardiac failure and in patients with any degree of ventricular dysfunction if they are receiving a beta-adrenergic blocker (see PRECAUTIONS, Drug interactions). Patients with milder ventricular dysfunction should, if possible, be controlled with optimum doses of digitalis and/or diuretics before verapamil treatment. (Note interactions with digoxin under PRECAUTIONS)

Hypotension

Occasionally, the pharmacologic action of verapamil may produce a decrease in blood pressure below normal levels, which may result in dizziness or symptomatic hypotension. The incidence of hypotension observed in 4,954 patients enrolled in clinical trials was 2.5%. In hypertensive patients, decreases in blood pressure below normal are unusual. Tilt-table testing (60 degrees) was not able to induce orthostatic hypotension.

Elevated liver enzymes

Elevations of transaminases with and without concomitant elevations in alkaline phosphatase and bilirubin have been reported. Such elevations have sometimes been transient and may disappear even with continued verapamil treatment. Several cases of hepatocellular injury related to verapamil have been proven by rechallenge; half of these had clinical symptoms (malaise, fever, and/or right upper quadrant pain), in addition to elevation of SGOT, SGPT, and alkaline phosphatase. Periodic monitoring of liver function in patients receiving verapamil is therefore prudent.

Accessory bypass tract (Wolff-Parkinson-White or Lown-Ganong-Levine)

Some patients with paroxysmal and/or chronic atrial fibrillation or atrial flutter and a coexisting accessory AV pathway have developed increased antegrade conduction across the accessory pathway bypassing the AV node, producing a very rapid ventricular response or ventricular fibrillation after receiving intravenous verapamil (or digitalis).

Although a risk of this occurring with oral verapamil has not been established, such patients receiving oral verapamil may be at risk and its use in these patients is contraindicated (see CONTRAINDICATIONS). Treatment is usually DC-cardioversion. Cardioversion has been used safely and effectively after oral CALAN.

Atrioventricular block

The effect of verapamil on AV conduction and the SA node may cause asymptomatic first-degree AV block and transient bradycardia, sometimes accompanied by nodal escape rhythms. PR-interval prolongation is correlated with verapamil plasma concentrations especially during the early titration phase of therapy. Higher degrees of AV block, however, were infrequently (0.8%) observed. Marked first-degree block or progressive development to second- or third-degree AV block requires a reduction in dosage or, in rare instances, discontinuation of verapamil HCl and institution of appropriate therapy, depending on the clinical situation.

Patients with hypertrophic cardiomyopathy (IHSS)

In 120 patients with hypertrophic cardiomyopathy (most of them refractory or intolerant to propranolol) who received therapy with verapamil at doses up to 720 mg/day, a variety of serious adverse effects were seen. Three patients died in pulmonary edema; all had severe left ventricular outflow obstruction and a past history of left ventricular dysfunction. Eight other patients had pulmonary edema and/or severe hypotension; abnormally high (greater than 20 mm Hg) pulmonary wedge pressure and a marked left ventricular outflow obstruction were present in most of these patients. Concomitant administration of quinidine (see PRECAUTIONS, Drug interactions) preceded the severe hypotension in 3 of the 8 patients (2 of whom developed pulmonary edema). Sinus bradycardia occurred in 11% of the patients, second-degree AV block in 4%, and sinus arrest in 2%. It must be appreciated that this group of patients had a serious disease with a high mortality rate. Most adverse effects responded well to dose reduction, and only rarely did verapamil use have to be discontinued.


PRECAUTIONS

General

Use in patients with impaired hepatic function

Since verapamil is highly metabolized by the liver, it should be administered cautiously to patients with impaired hepatic function. Severe liver dysfunction prolongs the elimination half-life of verapamil to about 14 to 16 hours; hence, approximately 30% of the dose given to patients with normal liver function should be administered to these patients. Careful monitoring for abnormal prolongation of the PR interval or other signs of excessive pharmacologic effects (see OVERDOSAGE) should be carried out.

Use in patients with attenuated (decreased) neuromuscular transmission

It has been reported that verapamil decreases neuromuscular transmission in patients with Duchenne's muscular dystrophy, prolongs recovery from the neuromuscular blocking agent vecuronium, and causes a worsening of myasthenia gravis. It may be necessary to decrease the dosage of verapamil when it is administered to patients with attenuated neuromuscular transmission.

Use in patients with impaired renal function

About 70% of an administered dose of verapamil is excreted as metabolites in the urine. Verapamil is not removed by hemodialysis. Until further data are available, verapamil should be administered cautiously to patients with impaired renal function. These patients should be carefully monitored for abnormal prolongation of the PR interval or other signs of overdosage (see OVERDOSAGE).

Drug interactions

Cytochrome inducers/inhibitors

In vitro metabolic studies indicate that verapamil is metabolized by cytochrome P450 CYP3A4, CYP1A2, CYP2C8, CYP2C9, and CYP2C18. Clinically significant interactions have been reported with inhibitors of CYP3A4 (e.g., erythromycin, ritonavir) causing elevation of plasma levels of verapamil while inducers of CYP3A4 (e.g., rifampin) have caused a lowering of plasma levels of verapamil.

HMG-CoA reductase inhibitors

The use of HMG-CoA reductase inhibitors that are CYP3A4 substrates in combination with verapamil has been associated with reports of myopathy/rhabdomyolysis.

Co-administration of multiple doses of 10 mg of verapamil with 80 mg simvastatin resulted in exposure to simvastatin 2.5-fold that following simvastatin alone. Limit the dose of simvastatin in patients on verapamil to 10 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A4 substrates (e.g., atorvastatin) may be required as verapamil may increase the plasma concentration of these drugs.

Ivabradine

Concurrent use of verapamil increases exposure to ivabradine and may exacerbate bradycardia and conduction disturbances. Avoid co-administration of verapamil and ivabradine.

Aspirin

In a few reported cases, co-administration of verapamil with aspirin has led to increased bleeding times greater than observed with aspirin alone.

Grapefruit juice

Grapefruit juice may increase plasma levels of verapamil.

Alcohol

Verapamil may increase blood alcohol concentrations and prolong its effects.

Beta-blockers

Controlled studies in small numbers of patients suggest that the concomitant use of CALAN and oral beta-adrenergic blocking agents may be beneficial in certain patients with chronic stable angina or hypertension, but available information is not sufficient to predict with confidence the effects of concurrent treatment in patients with left ventricular dysfunction or cardiac conduction abnormalities. Concomitant therapy with beta-adrenergic blockers and verapamil may result in additive negative effects on heart rate, atrioventricular conduction and/or cardiac contractility.

In one study involving 15 patients treated with high doses of propranolol (median dose: 480 mg/day; range: 160 to 1,280 mg/day) for severe angina, with preserved left ventricular function (ejection fraction greater than 35%), the hemodynamic effects of additional therapy with verapamil HCl were assessed using invasive methods. The addition of verapamil to high-dose beta-blockers induced modest negative inotropic and chronotropic effects that were not severe enough to limit short-term (48 hours) combination therapy in this study. These modest cardiodepressant effects persisted for greater than 6 but less than 30 hours after abrupt withdrawal of beta-blockers and were closely related to plasma levels of propranolol. The primary verapamil/beta-blocker interaction in this study appeared to be hemodynamic rather than electrophysiologic.

In other studies, verapamil did not generally induce significant negative inotropic, chronotropic, or dromotropic effects in patients with preserved left ventricular function receiving low or moderate doses of propranolol (less than or equal to 320 mg/day); in some patients, however, combined therapy did produce such effects. Therefore, if combined therapy is used, close surveillance of clinical status should be carried out. Combined therapy should usually be avoided in patients with atrioventricular conduction abnormalities and those with depressed left ventricular function.

Asymptomatic bradycardia (36 beats/min) with a wandering atrial pacemaker has been observed in a patient receiving concomitant timolol (a beta-adrenergic blocker) eyedrops and oral verapamil.

A decrease in metoprolol and propranolol clearance has been observed when either drug is administered concomitantly with verapamil. A variable effect has been seen when verapamil and atenolol were given together.

Digitalis

Clinical use of verapamil in digitalized patients has shown the combination to be well tolerated if digoxin doses are properly adjusted. However, chronic verapamil treatment can increase serum digoxin levels by 50% to 75% during the first week of therapy, and this can result in digitalis toxicity. In patients with hepatic cirrhosis, the influence of verapamil on digoxin kinetics is magnified. Verapamil may reduce total body clearance and extrarenal clearance of digitoxin by 27% and 29%, respectively. Maintenance and digitalization doses should be reduced when verapamil is administered, and the patient should be reassessed to avoid over- or under-digitalization. Whenever over-digitalization is suspected, the daily dose of digitalis should be reduced or temporarily discontinued. On discontinuation of CALAN use, the patient should be reassessed to avoid under-digitalization.

Antihypertensive agents

Verapamil administered concomitantly with oral antihypertensive agents (e.g., vasodilators, angiotensin-converting enzyme inhibitors, diuretics, beta-blockers) will usually have an additive effect on lowering blood pressure. Patients receiving these combinations should be appropriately monitored. Concomitant use of agents that attenuate alpha-adrenergic function with verapamil may result in a reduction in blood pressure that is excessive in some patients. Such an effect was observed in one study following the concomitant administration of verapamil and prazosin.

Antiarrhythmic agents

Disopyramide

Until data on possible interactions between verapamil and disopyramide are obtained, disopyramide should not be administered within 48 hours before or 24 hours after verapamil administration.

Flecainide

A study in healthy volunteers showed that the concomitant administration of flecainide and verapamil may have additive effects on myocardial contractility, AV conduction, and repolarization. Concomitant therapy with flecainide and verapamil may result in additive negative inotropic effect and prolongation of atrioventricular conduction.

Quinidine

In a small number of patients with hypertrophic cardiomyopathy (IHSS), concomitant use of verapamil and quinidine resulted in significant hypotension. Until further data are obtained, combined therapy of verapamil and quinidine in patients with hypertrophic cardiomyopathy should probably be avoided.

The electrophysiologic effects of quinidine and verapamil on AV conduction were studied in 8 patients. Verapamil significantly counteracted the effects of quinidine on AV conduction. There has been a report of increased quinidine levels during verapamil therapy.

Other agents

Nitrates

Verapamil has been given concomitantly with short- and long-acting nitrates without any undesirable drug interactions. The pharmacologic profile of both drugs and the clinical experience suggest beneficial interactions.

Cimetidine

The interaction between cimetidine and chronically administered verapamil has not been studied. Variable results on clearance have been obtained in acute studies of healthy volunteers; clearance of verapamil was either reduced or unchanged.

Lithium

Increased sensitivity to the effects of lithium (neurotoxicity) has been reported during concomitant verapamil-lithium therapy; lithium levels have been observed sometimes to increase, sometimes to decrease, and sometimes to be unchanged. Patients receiving both drugs must be monitored carefully.

Carbamazepine

Verapamil therapy may increase carbamazepine concentrations during combined therapy. This may produce carbamazepine side effects such as diplopia, headache, ataxia, or dizziness.

Rifampin

Therapy with rifampin may markedly reduce oral verapamil bioavailability.

Phenobarbital

Phenobarbital therapy may increase verapamil clearance.

Cyclosporine

Verapamil therapy may increase serum levels of cyclosporine.

Theophylline

Verapamil may inhibit the clearance and increase the plasma levels of theophylline.

Inhalation anesthetics

Animal experiments have shown that inhalation anesthetics depress cardiovascular activity by decreasing the inward movement of calcium ions. When used concomitantly, inhalation anesthetics and calcium antagonists, such as verapamil, should each be titrated carefully to avoid excessive cardiovascular depression.

Neuromuscular blocking agents

Clinical data and animal studies suggest that verapamil may potentiate the activity of neuromuscular blocking agents (curare-like and depolarizing). It may be necessary to decrease the dose of verapamil and/or the dose of the neuromuscular blocking agent when the drugs are used concomitantly.

Telithromycin

Hypotension and bradyarrhythmias have been observed in patients receiving concurrent telithromycin, an antibiotic in the ketolide class.

Clonidine

Sinus bradycardia resulting in hospitalization and pacemaker insertion has been reported in association with the use of clonidine concurrently with verapamil. Monitor heart rate in patients receiving concomitant verapamil and clonidine.

Carcinogenesis, mutagenesis, impairment of fertility

An 18-month toxicity study in rats, at a low multiple (6-fold) of the maximum recommended human dose, and not the maximum tolerated dose, did not suggest a tumorigenic potential. There was no evidence of a carcinogenic potential of verapamil administered in the diet of rats for two years at doses of 10, 35, and 120 mg/kg/day or approximately 1, 3.5, and 12 times, respectively, the maximum recommended human daily dose (480 mg/day or 9.6 mg/kg/day).

Verapamil was not mutagenic in the Ames test in 5 test strains at 3 mg per plate with or without metabolic activation.

Studies in female rats at daily dietary doses up to 5.5 times (55 mg/kg/day) the maximum recommended human dose did not show impaired fertility. Effects on male fertility have not been determined.

Pregnancy

Reproduction studies have been performed in rabbits and rats at oral doses up to 1.5 (15 mg/kg/day) and 6 (60 mg/kg/day) times the human oral daily dose, respectively, and have revealed no evidence of teratogenicity. In the rat, however, this multiple of the human dose was embryocidal and retarded fetal growth and development, probably because of adverse maternal effects reflected in reduced weight gains of the dams. This oral dose has also been shown to cause hypotension in rats. There are no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed. Verapamil crosses the placental barrier and can be detected in umbilical vein blood at delivery.

Labor and delivery

It is not known whether the use of verapamil during labor or delivery has immediate or delayed adverse effects on the fetus, or whether it prolongs the duration of labor or increases the need for forceps delivery or other obstetric intervention. Such adverse experiences have not been reported in the literature, despite a long history of use of verapamil in Europe in the treatment of cardiac side effects of beta-adrenergic agonist agents used to treat premature labor.

Nursing mothers

Verapamil is excreted in human milk. Because of the potential for adverse reactions in nursing infants from verapamil, nursing should be discontinued while verapamil is administered.

Pediatric use

Safety and effectiveness in pediatric patients have not been established.

ADVERSE REACTIONS

Serious adverse reactions are uncommon when CALAN therapy is initiated with upward dose titration within the recommended single and total daily dose. See WARNINGS for discussion of heart failure, hypotension, elevated liver enzymes, AV block, and rapid ventricular response. Reversible (upon discontinuation of verapamil) non-obstructive, paralytic ileus has been infrequently reported in association with the use of verapamil. The following reactions to orally administered verapamil occurred at rates greater than 1.0% or occurred at lower rates but appeared clearly drug-related in clinical trials in 4,954 patients:

Constipation 7.3% Dyspnea 1.4%
Dizziness 3.3% Bradycardia (HR <50/min) 1.4%
Nausea 2.7% AV block total (1°, 2°, 3°) 1.2%
Hypotension 2.5% 2° and 3° 0.8%
Headache 2.2% Rash 1.2%
Edema 1.9% Flushing 0.6%
CHF, Pulmonary edema 1.8%
Fatigue 1.7%
Elevated liver enzymes (see WARNINGS)

In clinical trials related to the control of ventricular response in digitalized patients who had atrial fibrillation or flutter, ventricular rates below 50 at rest occurred in 15% of patients and asymptomatic hypotension occurred in 5% of patients.

The following reactions, reported in 1.0% or less of patients, occurred under conditions (open trials, marketing experience) where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:

Cardiovascular: angina pectoris, atrioventricular dissociation, chest pain, claudication, myocardial infarction, palpitations, purpura (vasculitis), syncope.

Digestive system: diarrhea, dry mouth, gastrointestinal distress, gingival hyperplasia.

Hemic and lymphatic: ecchymosis or bruising.

Nervous system: cerebrovascular accident, confusion, equilibrium disorders, insomnia, muscle cramps, paresthesia, psychotic symptoms, shakiness, somnolence, extrapyramidal symptoms.

Skin: arthralgia and rash, exanthema, hair loss, hyperkeratosis, macules, sweating, urticaria, Stevens-Johnson syndrome, erythema multiforme.

Special senses: blurred vision, tinnitus.

Urogenital: gynecomastia, galactorrhea/hyperprolactinemia, increased urination, spotty menstruation, impotence.

Treatment of acute cardiovascular adverse reactions

The frequency of cardiovascular adverse reactions that require therapy is rare; hence, experience with their treatment is limited. Whenever severe hypotension or complete AV block occurs following oral administration of verapamil, the appropriate emergency measures should be applied immediately; eg, intravenously administered norepinephrine bitartrate, atropine sulfate, isoproterenol HCl (all in the usual doses), or calcium gluconate (10% solution). In patients with hypertrophic cardiomyopathy (IHSS), alpha-adrenergic agents (phenylephrine HCl, metaraminol bitartrate, or methoxamine HCl) should be used to maintain blood pressure, and isoproterenol and norepinephrine should be avoided. If further support is necessary, dopamine HCl or dobutamine HCl may be administered. Actual treatment and dosage should depend on the severity of the clinical situation and the judgment and experience of the treating physician.

INDICATIONS AND USAGE

CALAN tablets are indicated for the treatment of the following:

Angina

  1. Angina at rest including:
    Vasospastic (Prinzmetal's variant) angina
    Unstable (crescendo, pre-infarction) angina
  2. Chronic stable angina (classic effort-associated angina)

Arrhythmias

  1. In association with digitalis for the control of ventricular rate at rest and during stress in patients with chronic atrial flutter and/or atrial fibrillation (see WARNINGS: Accessory bypass tract)
  2. Prophylaxis of repetitive paroxysmal supraventricular tachycardia

Essential hypertension

CALAN is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including this drug.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

CALAN® SR (verapamil sustained release oral caplets)

These highlights do not include all the information needed to use CALAN SR safety and effectively. See full prescribing information for CALAN SR.

CONTRAINDICATIONS

Verapamil HCl caplets are contraindicated in:

  1. Severe left ventricular dysfunction (see WARNINGS)
  2. Hypotension (systolic pressure less than 90 mm Hg) or cardiogenic shock
  3. Sick sinus syndrome (except in patients with a functioning artificial ventricular pacemaker)
  4. Second- or third-degree AV block (except in patients with a functioning artificial ventricular pacemaker)
  5. Patients with atrial flutter or atrial fibrillation and an accessory bypass tract (eg, Wolff-Parkinson-White, Lown-Ganong-Levine syndromes) (see WARNINGS)
  6. Patients with known hypersensitivity to verapamil hydrochloride

WARNINGS

Heart failure

Verapamil has a negative inotropic effect, which in most patients is compensated by its afterload reduction (decreased systemic vascular resistance) properties without a net impairment of ventricular performance. In clinical experience with 4,954 patients, 87 (1.8%) developed congestive heart failure or pulmonary edema.

Verapamil should be avoided in patients with severe left ventricular dysfunction (eg, ejection fraction less than 30%) or moderate to severe symptoms of cardiac failure and in patients with any degree of ventricular dysfunction if they are receiving a beta-adrenergic blocker (see PRECAUTIONS, Drug interactions). Patients with milder ventricular dysfunction should, if possible, be controlled with optimum doses of digitalis and/or diuretics before verapamil treatment. (Note interactions with digoxin under PRECAUTIONS)

Hypotension

Occasionally, the pharmacologic action of verapamil may produce a decrease in blood pressure below normal levels, which may result in dizziness or symptomatic hypotension. The incidence of hypotension observed in 4,954 patients enrolled in clinical trials was 2.5%. In hypertensive patients, decreases in blood pressure below normal are unusual. Tilt-table testing (60 degrees) was not able to induce orthostatic hypotension.

Elevated liver enzymes

Elevations of transaminases with and without concomitant elevations in alkaline phosphatase and bilirubin have been reported. Such elevations have sometimes been transient and may disappear even in the face of continued verapamil treatment. Several cases of hepatocellular injury related to verapamil have been proven by rechallenge; half of these had clinical symptoms (malaise, fever, and/or right upper quadrant pain) in addition to elevation of SGOT, SGPT, and alkaline phosphatase. Periodic monitoring of liver function in patients receiving verapamil is therefore prudent.

Accessory bypass tract (Wolff-Parkinson-White or Lown-Ganong-Levine)

Some patients with paroxysmal and/or chronic atrial fibrillation or atrial flutter and a coexisting accessory AV pathway have developed increased antegrade conduction across the accessory pathway bypassing the AV node, producing a very rapid ventricular response or ventricular fibrillation after receiving intravenous verapamil (or digitalis). Although a risk of this occurring with oral verapamil has not been established, such patients receiving oral verapamil may be at risk and its use in these patients is contraindicated (see CONTRAINDICATIONS). Treatment is usually DC-cardioversion. Cardioversion has been used safely and effectively after oral CALAN.

Atrioventricular block

The effect of verapamil on AV conduction and the SA node may cause asymptomatic first-degree AV block and transient bradycardia, sometimes accompanied by nodal escape rhythms. PR-interval prolongation is correlated with verapamil plasma concentrations, especially during the early titration phase of therapy. Higher degrees of AV block, however, were infrequently (0.8%) observed. Marked first-degree block or progressive development to second- or third-degree AV block, requires a reduction in dosage or, in rare instances, discontinuation of verapamil HCl and institution of appropriate therapy, depending upon the clinical situation.

Patients with hypertrophic cardiomyopathy (IHSS)

In 120 patients with hypertrophic cardiomyopathy (most of them refractory or intolerant to propranolol) who received therapy with verapamil at doses up to 720 mg/day, a variety of serious adverse effects were seen. Three patients died in pulmonary edema; all had severe left ventricular outflow obstruction and a past history of left ventricular dysfunction. Eight other patients had pulmonary edema and/or severe hypotension; abnormally high (greater than 20 mm Hg) pulmonary wedge pressure and a marked left ventricular outflow obstruction were present in most of these patients. Concomitant administration of quinidine (see PRECAUTIONS, Drug interactions) preceded the severe hypotension in 3 of the 8 patients (2 of whom developed pulmonary edema). Sinus bradycardia occurred in 11% of the patients, second-degree AV block in 4%, and sinus arrest in 2%. It must be appreciated that this group of patients had a serious disease with a high mortality rate. Most adverse effects responded well to dose reduction, and only rarely did verapamil use have to be discontinued.


PRECAUTIONS

General

Use in patients with impaired hepatic function

Since verapamil is highly metabolized by the liver, it should be administered cautiously to patients with impaired hepatic function. Severe liver dysfunction prolongs the elimination half-life of immediate-release verapamil to about 14 to 16 hours; hence, approximately 30% of the dose given to patients with normal liver function should be administered to these patients. Careful monitoring for abnormal prolongation of the PR interval or other signs of excessive pharmacologic effects (see OVERDOSAGE) should be carried out.

Use in patients with attenuated (decreased) neuromuscular transmission

It has been reported that verapamil decreases neuromuscular transmission in patients with Duchenne's muscular dystrophy, and that verapamil prolongs recovery from the neuromuscular blocking agent vecuronium. It may be necessary to decrease the dosage of verapamil when it is administered to patients with attenuated neuromuscular transmission.

Use in patients with impaired renal function

About 70% of an administered dose of verapamil is excreted as metabolites in the urine. Verapamil is not removed by hemodialysis. Until further data are available, verapamil should be administered cautiously to patients with impaired renal function. These patients should be carefully monitored for abnormal prolongation of the PR interval or other signs of overdosage (see OVERDOSAGE).

Drug interactions

HMG-CoA reductase inhibitors

The use of HMG-CoA reductase inhibitors that are CYP3A4 substrates in combination with verapamil has been associated with reports of myopathy/rhabdomyolysis.

Co-administration of multiple doses of 10 mg of verapamil with 80 mg simvastatin resulted in exposure to simvastatin 2.5-fold that following simvastatin alone. Limit the dose of simvastatin in patients on verapamil to 10 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A4 substrates (e.g., atorvastatin) may be required as verapamil may increase the plasma concentration of these drugs.

Ivabradine

Concurrent use of verapamil increases exposure to ivabradine and may exacerbate bradycardia and conduction disturbances. Avoid co-administration of verapamil and ivabradine.

Beta-blockers

Concomitant therapy with beta-adrenergic blockers and verapamil may result in additive negative effects on heart rate, atrioventricular conduction and/or cardiac contractility. The combination of sustained-release verapamil and beta-adrenergic blocking agents has not been studied. However, there have been reports of excessive bradycardia and AV block, including complete heart block, when the combination has been used for the treatment of hypertension. For hypertensive patients, the risks of combined therapy may outweigh the potential benefits. The combination should be used only with caution and close monitoring.

Asymptomatic bradycardia (36 beats/min) with a wandering atrial pacemaker has been observed in a patient receiving concomitant timolol (a beta-adrenergic blocker) eyedrops and oral verapamil.

A decrease in metoprolol and propranolol clearance has been observed when either drug is administered concomitantly with verapamil. A variable effect has been seen when verapamil and atenolol were given together.

Digitalis

Clinical use of verapamil in digitalized patients has shown the combination to be well tolerated if digoxin doses are properly adjusted. However, chronic verapamil treatment can increase serum digoxin levels by 50% to 75% during the first week of therapy, and this can result in digitalis toxicity. In patients with hepatic cirrhosis the influence of verapamil on digoxin kinetics is magnified. Verapamil may reduce total body clearance and extrarenal clearance of digitoxin by 27% and 29%, respectively. Maintenance and digitalization doses should be reduced when verapamil is administered, and the patient should be carefully monitored to avoid over- or under-digitalization. Whenever over-digitalization is suspected, the daily dose of digitalis should be reduced or temporarily discontinued. On discontinuation of CALAN use, the patient should be reassessed to avoid under-digitalization.

Antihypertensive agents

Verapamil administered concomitantly with oral antihypertensive agents (eg, vasodilators, angiotensin-converting enzyme inhibitors, diuretics, beta-blockers) will usually have an additive effect on lowering blood pressure. Patients receiving these combinations should be appropriately monitored. Concomitant use of agents that attenuate alpha-adrenergic function with verapamil may result in a reduction in blood pressure that is excessive in some patients. Such an effect was observed in one study following the concomitant administration of verapamil and prazosin.

Antiarrhythmic agents

Disopyramide

Until data on possible interactions between verapamil and disopyramide phosphate are obtained, disopyramide should not be administered within 48 hours before or 24 hours after verapamil administration.

Flecainide

A study in healthy volunteers showed that the concomitant administration of flecainide and verapamil may have additive effects on myocardial contractility, AV conduction, and repolarization. Concomitant therapy with flecainide and verapamil may result in additive negative inotropic effect and prolongation of atrioventricular conduction.

Quinidine

In a small number of patients with hypertrophic cardiomyopathy (IHSS), concomitant use of verapamil and quinidine resulted in significant hypotension. Until further data are obtained, combined therapy of verapamil and quinidine in patients with hypertrophic cardiomyopathy should probably be avoided.

The electrophysiologic effects of quinidine and verapamil on AV conduction were studied in 8 patients. Verapamil significantly counteracted the effects of quinidine on AV conduction. There has been a report of increased quinidine levels during verapamil therapy.

Other agents

Alcohol

Verapamil has been found to inhibit ethanol elimination significantly, resulting in elevated blood ethanol concentrations that may prolong the intoxicating effects of alcohol (see CLINICAL PHARMACOLOGY, Pharmacokinetics and metabolism).

Nitrates

Verapamil has been given concomitantly with short- and long-acting nitrates without any undesirable drug interactions. The pharmacologic profile of both drugs and the clinical experience suggest beneficial interactions.

Cimetidine

The interaction between cimetidine and chronically administered verapamil has not been studied. Variable results on clearance have been obtained in acute studies of healthy volunteers; clearance of verapamil was either reduced or unchanged.

Lithium

Increased sensitivity to the effects of lithium (neurotoxicity) has been reported during concomitant verapamil-lithium therapy; lithium levels have been observed sometimes to increase, sometimes to decrease, and sometimes to be unchanged. Patients receiving both drugs must be monitored carefully.

Carbamazepine

Verapamil therapy may increase carbamazepine concentrations during combined therapy. This may produce carbamazepine side effects such as diplopia, headache, ataxia, or dizziness.

Rifampin

Therapy with rifampin may markedly reduce oral verapamil bioavailability.

Phenobarbital

Phenobarbital therapy may increase verapamil clearance.

Cyclosporin

Verapamil therapy may increase serum levels of cyclosporin.

Theophylline

Verapamil may inhibit the clearance and increase the plasma levels of theophylline.

Inhalation anesthetics

Animal experiments have shown that inhalation anesthetics depress cardiovascular activity by decreasing the inward movement of calcium ions. When used concomitantly, inhalation anesthetics and calcium antagonists, such as verapamil, should each be titrated carefully to avoid excessive cardiovascular depression.

Neuromuscular blocking agents

Clinical data and animal studies suggest that verapamil may potentiate the activity of neuromuscular blocking agents (curare-like and depolarizing). It may be necessary to decrease the dose of verapamil and/or the dose of the neuromuscular blocking agent when the drugs are used concomitantly.

Telithromycin

Hypotension and bradyarrhythmias have been observed in patients receiving concurrent telithromycin, an antibiotic in the ketolide class.

Clonidine

Sinus bradycardia resulting in hospitalization and pacemaker insertion has been reported in association with the use of clonidine concurrently with verapamil. Monitor heart rate in patients receiving concomitant verapamil and clonidine.

Carcinogenesis, mutagenesis, impairment of fertility

An 18-month toxicity study in rats, at a low multiple (6-fold) of the maximum recommended human dose, and not the maximum tolerated dose, did not suggest a tumorigenic potential. There was no evidence of a carcinogenic potential of verapamil administered in the diet of rats for two years at doses of 10, 35, and 120 mg/kg/day or approximately 1, 3.5, and 12 times, respectively, the maximum recommended human daily dose (480 mg/day or 9.6 mg/kg/day).

Verapamil was not mutagenic in the Ames test in 5 test strains at 3 mg per plate with or without metabolic activation.

Studies in female rats at daily dietary doses up to 5.5 times (55 mg/kg/day) the maximum recommended human dose did not show impaired fertility. Effects on male fertility have not been determined.

Pregnancy

Reproduction studies have been performed in rabbits and rats at oral doses up to 1.5 (15 mg/kg/day) and 6 (60 mg/kg/day) times the human oral daily dose, respectively, and have revealed no evidence of teratogenicity. In the rat, however, this multiple of the human dose was embryocidal and retarded fetal growth and development, probably because of adverse maternal effects reflected in reduced weight gains of the dams. This oral dose has also been shown to cause hypotension in rats. There are no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed. Verapamil crosses the placental barrier and can be detected in umbilical vein blood at delivery.

Labor and delivery

It is not known whether the use of verapamil during labor or delivery has immediate or delayed adverse effects on the fetus, or whether it prolongs the duration of labor or increases the need for forceps delivery or other obstetric intervention. Such adverse experiences have not been reported in the literature, despite a long history of use of verapamil in Europe in the treatment of cardiac side effects of beta-adrenergic agonist agents used to treat premature labor.

Nursing mothers

Verapamil is excreted in human milk. Because of the potential for adverse reactions in nursing infants from verapamil, nursing should be discontinued while verapamil is administered.

Pediatric use

Safety and efficacy of CALAN SR in pediatric patients below the age of 18 years have not been established.

Animal pharmacology and/or animal toxicology

In chronic animal toxicology studies, verapamil caused lenticular and/or suture line changes at 30 mg/kg/day or greater, and frank cataracts at 62.5 mg/kg/day or greater in the beagle dog but not in the rat. Development of cataracts due to verapamil has not been reported in man.

ADVERSE REACTIONS

Serious adverse reactions are uncommon when verapamil therapy is initiated with upward dose titration within the recommended single and total daily dose. See WARNINGS for discussion of heart failure, hypotension, elevated liver enzymes, AV block, and rapid ventricular response. Reversible (upon discontinuation of verapamil) non-obstructive, paralytic ileus has been infrequently reported in association with the use of verapamil. The following reactions to orally administered verapamil occurred at rates greater than 1.0% or occurred at lower rates but appeared clearly drug-related in clinical trials in 4,954 patients:

Constipation 7.3% Dyspnea 1.4%
Dizziness 3.3% Bradycardia
Nausea 2.7%   (HR <50/min) 1.4%
Hypotension 2.5% AV block
Headache 2.2%   (total 1°, 2°, 3°) 1.2%
Edema 1.9%   (2° and 3°) 0.8%
CHF, Pulmonary Rash 1.2%
edema 1.8% Flushing 0.6%
Fatigue 1.7%

Elevated liver enzymes (see WARNINGS)

In clinical trials related to the control of ventricular response in digitalized patients who had atrial fibrillation or flutter, ventricular rates below 50/min at rest occurred in 15% of patients and asymptomatic hypotension occurred in 5% of patients.

The following reactions, reported in 1% or less of patients, occurred under conditions (open trials, marketing experience) where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:

Cardiovascular: angina pectoris, atrioventricular dissociation, chest pain, claudication, myocardial infarction, palpitations, purpura (vasculitis), syncope.

Digestive system: diarrhea, dry mouth, gastrointestinal distress, gingival hyperplasia.

Hemic and lymphatic: ecchymosis or bruising.

Nervous system: cerebrovascular accident, confusion, equilibrium disorders, insomnia, muscle cramps, paresthesia, psychotic symptoms, shakiness, somnolence.

Skin: arthralgia and rash, exanthema, hair loss, hyperkeratosis, macules, sweating, urticaria, Stevens-Johnson syndrome, erythema multiforme.

Special senses: blurred vision, tinnitus.

Urogenital: gynecomastia, galactorrhea/hyperprolactinemia, increased urination, spotty menstruation, impotence.

INDICATIONS AND USAGE

CALAN SR is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including this drug.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

CARDURA® (doxazosin mesylate tablets)

These highlights do not include all the information needed to use CARDURA safety and effectively. See full prescribing information for CARDURA.

4 CONTRAINDICATIONS

The use of CARDURA is contraindicated in patients with a hypersensitivity to doxazosin, other quinazolines (e.g., prazosin, terazosin), or any of its components.

5 WARNINGS AND PRECAUTIONS

5.1 Postural Hypotension

Postural hypotension with or without symptoms (e.g., dizziness) may develop within a few hours following administration of CARDURA. However, infrequently, symptomatic postural hypotension has also been reported later than a few hours after dosing. As with other alpha-blockers, there is a potential for syncope, especially after the initial dose or after an increase in dosage strength. Advise patient how to avoid symptoms resulting from postural hypotension and what measures to take should they develop.

Concomitant administration of CARDURA with a PDE-5 inhibitor can result in additive blood pressure lowering effects and symptomatic hypotension.

5.2 Cataract Surgery

Intraoperative Floppy Iris Syndrome (IFIS) has been observed during cataract surgery in some patients on or previously treated with alpha1 blockers. This variant of small pupil syndrome is characterized by the combination of a flaccid iris that billows in response to intraoperative irrigation currents, progressive intraoperative miosis despite preoperative dilation with standard mydriatic drugs, and potential prolapse of the iris toward the phacoemulsification incisions. The patient's surgeon should be prepared for possible modifications to their surgical technique, such as the utilization of iris hooks, iris dilator rings, or viscoelastic substances. There does not appear to be a benefit of stopping alpha1 blocker therapy prior to cataract surgery.

5.3 Prostate Cancer

Carcinoma of the prostate causes many of the symptoms associated with BPH and the two disorders frequently co-exist. Carcinoma of the prostate should therefore be ruled out prior to commencing therapy with CARDURA for the treatment of BPH.

5.4 Priapism

Alpha1 antagonists, including doxazosin, have been associated with priapism (painful penile erection, sustained for hours and unrelieved by sexual intercourse or masturbation). This condition can lead to permanent impotence if not promptly treated.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Benign Prostatic Hyperplasia (BPH)

The incidence of adverse events has been ascertained from worldwide clinical trials in 965 BPH patients. The incidence rates presented below (Table 2) are based on combined data from seven placebo-controlled trials involving once-daily administration of CARDURA in doses of 1 to 16 mg in hypertensives and 0.5 to 8 mg in normotensives. Adverse reactions occurring more than 1% more frequently in BPH patients treated with CARDURA vs placebo are summarized in Table 1.

Table 1. Adverse Reactions Occurring more than 1% More Frequently in BPH Patients Treated with Cardura Versus Placebo
BODY SYSTEM Cardura
N=665
Placebo
N=300
*
Includes vertigo
NERVOUS SYSTEM DISORDERS
Dizziness* 15.6% 9.0%
Somnolence 3.0% 1.0%
CARDIAC DISORDERS
Hypotension 1.7% 0%
RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS
Dyspnoea 2.6% 0.3%
GASTROINTESTINAL DISORDERS
Dry Mouth 1.4% 0.3%
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS
Fatigue 8.0% 1.7%
Oedema 2.7% 0.7%

Other adverse reactions occurring less than 1% more frequently in BPH patients treated with CARDURA vs placebo but plausibly related to CARDURA include: palpitations.

Hypertension

CARDURA has been administered to approximately 4000 hypertensive patients in clinical trials, of whom 1679 were included in the hypertension clinical development program. In placebo-controlled studies, adverse events occurred in 49% and 40% of patients in the doxazosin and placebo groups, respectively, and led to discontinuation in 2% of patients in each group.

Adverse reactions occurring more than 1% more frequently in hypertensive patients treated with CARDURA vs placebo are summarized in Table 1. . Postural effects and edema appeared to be dose-related. The prevalence rates presented below are based on combined data from placebo-controlled studies involving once-daily administration of doxazosin at doses ranging from 1 to 16 mg.

Table 2. Adverse Reactions Occurring more than 1% More Frequently in Hypertensive Patients Treated with Cardura versus Placebo
BODY SYSTEM Cardura
N=339
Placebo
N=336
NERVOUS SYSTEM DISORDERS
Dizziness 19% 9%
Somnolence 5% 1%
RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS
Rhinitis 3% 1%
RENAL AND URINARY DISORDERS
Polyuria 2% 0%
REPRODUCTIVE SYSTEM AND BREAST DISORDERS GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS
Fatigue / Malaise 12% 6%

Other adverse reactions occurring less than 1% more frequently in hypertensive patients treated with CARDURA vs placebo but plausibly related to CARDURA use include vertigo, hypotension, hot flushes, epistaxis and oedema.

CARDURA has been associated with decreases in white blood cell counts

Laboratory changes observed in clinical studies

Leukopenia/Neutropenia: Decreases in mean white blood cell (WBC) and mean neutrophil count were observed in controlled clinical trials of hypertensive patients receiving CARDURA. In cases where follow-up was available, WBC and neutrophil counts returned to normal after discontinuation of CARDURA. No patients became symptomatic as a result of the low WBC or neutrophil counts.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of CARDURA. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

In post-marketing experience, the following additional adverse reactions have been reported:
Blood and Lymphatic System Disorders: leukopenia, thrombocytopenia;
Immune System Disorders: allergic reaction;
Nervous System Disorders: hypoesthesia;
Eye Disorders: Intraoperative Floppy Iris Syndrome [see Warnings and precautions (5.4)];
Cardiac Disorders: bradycardia;
Respiratory, Thoracic and Mediastinal Disorders: bronchospasm aggravated;
Gastrointestinal Disorders: vomiting;
Hepatobiliary Disorders: cholestasis, hepatitis cholestatic;
Skin and Subcutaneous Tissue Disorders: urticaria;
Musculoskeletal and Connective Tissue Disorders: muscle cramps, muscle weakness;
Renal and Urinary Disorders: hematuria, micturition disorder, micturition frequency, nocturia;
Reproductive System and Breast Disorders: gynecomastia, priapism.

1 INDICATIONS AND USAGE

1.1 Benign Prostatic Hyperplasia (BPH)

CARDURA is indicated for the treatment of the signs and symptoms of BPH.

1.2 Hypertension

CARDURA is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes, including this drug.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

CARDURA may be used alone or in combination with other antihypertensives.

CARDURA® (XL) (doxazosin mesylate extended release tablets)

These highlights do not include all the information needed to use CARDURA (XL) safety and effectively. See full prescribing information for CARDURA (XL).

4 CONTRAINDICATIONS

CARDURA XL is contraindicated in patients with a known hypersensitivity to doxazosin, other quinazolines (e.g., prazosin, terazosin), or any of the inert ingredients. Allergic reactions to doxazosin and other quinazolines have included skin rash, urticaria, pruritus, angioedema, and respiratory symptoms [see Adverse Reactions (6.2)].

5 WARNINGS AND PRECAUTIONS

5.1 Postural Hypotension

Postural hypotension with or without symptoms (e.g., dizziness) may develop within a few hours following administration of CARDURA XL. However, infrequently, symptomatic postural hypotension has also been reported later than a few hours after dosing. As with other alpha-blockers, there is a potential for syncope, especially after the initial dose or after an increase in dosage strength. Patients should be warned of the possible occurrence of such events and should avoid situations where injury could result should syncope occur. Care should be taken when CARDURA XL is administered to patients with symptomatic hypotension or patients who have had a hypotensive response to other medications.

5.2 Cataract Surgery

Intraoperative Floppy Iris Syndrome (IFIS) has been observed during cataract surgery in some patients on or previously treated with alpha1 blockers. This variant of small pupil syndrome is characterized by the combination of a flaccid iris that billows in response to intraoperative irrigation currents, progressive intraoperative miosis despite preoperative dilation with standard mydriatic drugs, and potential prolapse of the iris toward the phacoemulsification incisions. The patient's surgeon should be prepared for possible modifications to their surgical technique, such as the utilization of iris hooks, iris dilator rings, or viscoelastic substances. There does not appear to be a benefit from stopping alpha1 blocker therapy prior to cataract surgery.

5.3 Gastrointestinal Disorders

As with any other non-deformable material, caution should be used when administering CARDURA XL to patients with preexisting severe gastrointestinal narrowing (pathologic or iatrogenic). There have been rare reports of obstructive symptoms in patients with known strictures in association with the ingestion of another drug in this non-deformable extended release formulation. Markedly increased GI retention times, as may occur in patients with chronic constipation, can increase systemic exposure to doxazosin and thereby potentially increase adverse reactions.

5.4 Prostate Cancer

Carcinoma of the prostate causes many of the same symptoms associated with BPH and the two disorders frequently co-exist. Carcinoma of the prostate should therefore be ruled out prior to commencing therapy with CARDURA XL.

5.5 PDE-5 Inhibitors

Concomitant administration of CARDURA XL with a PDE-5 inhibitor can result in additive blood pressure lowering effects and symptomatic hypotension. Pharmacodynamic interactions between CARDURA XL and antihypertensive medications or other vasodilating agents have not been determined.

5.6 Patients with Hepatic Impairment

CARDURA XL is not recommended for patients with severe hepatic impairment and should be administered with caution to patients with mild or moderate hepatic impairment [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].

5.7 Patients with Coronary Insufficiency

Patients with congestive heart failure, angina pectoris, or acute myocardial infarction within the last 6 months were excluded from the Phase 3 studies. If symptoms of angina pectoris should newly appear or worsen, CARDURA XL should be discontinued.

5.8 CYP 3A4 Inhibitors

Caution should be exercised when concomitantly administering CARDURA XL with a strong CYP 3A4 inhibitor, such as atanazavir, clarithromycin, indinavir, itraconazole, ketoconazole, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, or voriconazole.

5.9 Priapism

Rarely (probably less frequently than once in every several thousand patients), alpha-1 antagonists, including doxazosin, have been associated with priapism (painful penile erection, sustained for hours and unrelieved by sexual intercourse or masturbation). Because this condition can lead to permanent impotence if not promptly treated, patients must be advised about the seriousness of the condition.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

The incidence of adverse reactions was derived from two controlled efficacy and safety trials involving 1473 BPH patients. In Study 1, CARDURA XL (n=317) was compared to doxazosin IR tablets (n=322) and to placebo (n=156). In Study 2, CARDURA XL (n=350) was compared just to doxazosin IR tablets (n=330). In both of these studies, CARDURA XL was initiated at a dose of 4 mg, which could be increased by the investigator to 8 mg after seven weeks if an adequate response was not seen [see Clinical Studies (14.1)]. Similarly, doxazosin IR was begun at a dose of 1 mg, which was increased in all patients to 2 mg after 1 week, followed by the option to increase to 4 mg after 4 weeks, and 8 mg after 7 weeks.

The most commonly reported adverse reactions leading to discontinuation in the CARDURA XL group were: dizziness, dyspnea, asthenia, headache, hypotension, postural hypotension, and somnolence. The rates of discontinuation for adverse reactions were 6%, 7% and 3% in the CARDURA XL, doxazosin IR, and placebo groups, respectively.

Table 1 lists the incidence rates of adverse reactions derived from all reported adverse events in the two controlled studies (Studies 1 and 2) combined, at a rate greater than placebo and in 1% or more of patients treated with CARDURA XL.

TABLE 1 Adverse Reactions, Derived from All Adverse Events Exceeding Placebo Rate and Occurring in ≥1% of BPH Patients Treated with CARDURA XL
Body System CARDURA XL
(N = 666)
Doxazosin IR
(N = 651)
Placebo
(N = 156)
BODY AS A WHOLE
  Abdominal Pain 1.8% 2.3% 0.6%
  Asthenia 3.9% 6.9% 1.3%
  Headache 6.0% 5.1% 4.5%
CARDIOVASCULAR
  Hypotension 1.7% 1.8% 0.0%
  Postural Hypotension 1.2% 2.2% 0.6%
DIGESTIVE
  Dyspepsia 1.4% 1.2% 0.0%
  Nausea 1.2% 2.3% 0.6%
MUSCULOSKELETAL
  Myalgia 1.4% 0.5% 0.0%
NERVOUS
  Dizziness 5.3% 9.1% 1.9%
  Somnolence 1.5% 1.2% 0.0%
  Vertigo 1.5% 4.1% 0.6%
RESPIRATORY
  Dyspnea 1.2% 1.2% 0.0%
  Respiratory Tract Infection 4.8% 4.5% 1.9%
UROGENITAL
  Urinary Tract Infection 1.4% 0.8% 0.6%

Additional adverse events reported with CARDURA XL, reported by less than 1% of patients, and those of clinical interest include: Cardiovascular System: angina pectoris, syncope, tachycardia, chest pain, palpitations; Digestive System: diarrhea; Musculoskeletal System: arthralgia; Nervous System: libido decreased; Urogenital System: impotence, dysuria.

In general, the adverse events reported in the open-label safety extension, in approximately 295 BPH patients treated for up to 37 weeks, were similar in type and frequency to the events described above in the controlled trials.

6.2 Postmarketing Experience

The following adverse events have been identified during post-approval use of doxazosin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Autonomic Nervous System: priapism; Cardiovascular System: cerebrovascular accidents, dizziness postural, myocardial infarction; Central and Peripheral Nervous System: hypoesthesia, paresthesia; Endocrine System: gynecomastia; Gastrointestinal System: gastrointestinal obstruction, vomiting; General Body System: fatigue, hot flushes, malaise; Heart Rate/Rhythm: bradycardia, cardiac arrhythmias; Hematopoietic: leukopenia, purpura, thrombocytopenia; Liver/Biliary System: abnormal liver function tests, hepatitis, hepatitis cholestatic, jaundice; Musculoskeletal System: muscle cramps, muscle weakness; Psychiatric: agitation, anorexia, nervousness; Respiratory System: bronchospasm aggravated; Skin Disorders: alopecia, urticaria, skin rash, pruritus; Special Senses: blurred vision, Intraoperative Floppy Iris Syndrome [see Warnings and Precautions (5.2)]; Urinary System: hematuria, micturition disorder, micturition frequency, nocturia, polyuria.

There have been rare reports of gastrointestinal irritation and gastrointestinal bleeding with use of another drug in this non-deformable sustained release formulation, although causal relationship to the drug is uncertain.

1 INDICATIONS AND USAGE

CARDURA® XL (doxazosin mesylate extended release tablets) is indicated for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH).

CARDURA XL is not indicated for the treatment of hypertension.

CHANTIX® (varenicline tartrate)

These highlights do not include all the information needed to use CHANTIX safety and effectively. See full prescribing information for CHANTIX.

4 CONTRAINDICATIONS

CHANTIX is contraindicated in patients with a known history of serious hypersensitivity reactions or skin reactions to CHANTIX.

5 WARNINGS AND PRECAUTIONS

5.1 Neuropsychiatric Adverse Events including Suicidality

Serious neuropsychiatric adverse events have been reported in patients being treated with CHANTIX [see Adverse Reactions (6.2)]. These postmarketing reports have included changes in mood (including depression and mania), psychosis, hallucinations, paranoia, delusions, homicidal ideation, aggression, hostility, agitation, anxiety, and panic, as well as suicidal ideation, suicide attempt, and completed suicide. Some patients who stopped smoking may have been experiencing symptoms of nicotine withdrawal, including depressed mood. Depression, rarely including suicidal ideation, has been reported in smokers undergoing a smoking cessation attempt without medication. However, some of these adverse events occurred in patients taking CHANTIX who continued to smoke.

Neuropsychiatric adverse events occurred in patients without and with pre-existing psychiatric disease; some patients experienced worsening of their psychiatric illnesses. Some neuropsychiatric adverse events, including unusual and sometimes aggressive behavior directed to oneself or others, may have been worsened by concomitant use of alcohol [see Warnings and Precautions (5.3), Adverse Reactions (6.2)]. Observe patients for the occurrence of neuropsychiatric adverse events. Advise patients and caregivers that the patient should stop taking CHANTIX and contact a healthcare provider immediately if agitation, depressed mood, or changes in behavior or thinking that are not typical for the patient are observed, or if the patient develops suicidal ideation or suicidal behavior. The healthcare provider should evaluate the severity of the symptoms and the extent to which the patient is benefiting from treatment, and consider options including dose reduction, continued treatment under closer monitoring, or discontinuing treatment. In many postmarketing cases, resolution of symptoms after discontinuation of CHANTIX was reported. However, the symptoms persisted in some cases; therefore, ongoing monitoring and supportive care should be provided until symptoms resolve.

The neuropsychiatric safety of CHANTIX was evaluated in a randomized, double-blind, active and placebo-controlled study that included patients without a history of psychiatric disorder (non-psychiatric cohort, N=3912) and patients with a history of psychiatric disorder (psychiatric cohort, N=4003). In the non-psychiatric cohort, CHANTIX was not associated with an increased incidence of clinically significant neuropsychiatric adverse events in a composite endpoint comprising anxiety, depression, feeling abnormal, hostility, agitation, aggression, delusions, hallucinations, homicidal ideation, mania, panic, and irritability. In the psychiatric cohort, there were more events reported in each treatment group compared to the non-psychiatric cohort, and the incidence of events in the composite endpoint was higher for each of the active treatments compared to placebo: Risk Differences (RDs) (95%CI) vs. placebo were 2.7% (-0.05, 5.4) for CHANTIX, 2.2% (-0.5, 4.9) for bupropion, and 0.4% (-2.2, 3.0) for transdermal nicotine. In the non-psychiatric cohort, neuropsychiatric adverse events of a serious nature were reported in 0.1% of CHANTIX-treated patients and 0.4% of placebo-treated patients. In the psychiatric cohort, neuropsychiatric events of a serious nature were reported in 0.6% of CHANTIX-treated patients, with 0.5% involving psychiatric hospitalization. In placebo-treated patients, serious neuropsychiatric events occurred in 0.6%, with 0.2% requiring psychiatric hospitalization [see Clinical Studies (14.9)].

5.2 Seizures

During clinical trials and the post marketing experience, there have been reports of seizures in patients treated with CHANTIX. Some patients had no history of seizures, whereas others had a history of seizure disorder that was remote or well-controlled. In most cases, the seizure occurred within the first month of therapy. Weigh this potential risk against the potential benefits before prescribing CHANTIX in patients with a history of seizures or other factors that can lower the seizure threshold. Advise patients to discontinue CHANTIX and contact a healthcare provider immediately if they experience a seizure while on treatment [see Adverse Reactions (6.2)].

5.3 Interaction with Alcohol

There have been postmarketing reports of patients experiencing increased intoxicating effects of alcohol while taking CHANTIX. Some cases described unusual and sometimes aggressive behavior, and were often accompanied by amnesia for the events. Advise patients to reduce the amount of alcohol they consume while taking CHANTIX until they know whether CHANTIX affects their tolerance for alcohol [see Adverse Reactions (6.2)].

5.4 Accidental Injury

There have been postmarketing reports of traffic accidents, near-miss incidents in traffic, or other accidental injuries in patients taking CHANTIX. In some cases, the patients reported somnolence, dizziness, loss of consciousness or difficulty concentrating that resulted in impairment, or concern about potential impairment, in driving or operating machinery. Advise patients to use caution driving or operating machinery or engaging in other potentially hazardous activities until they know how CHANTIX may affect them.

5.5 Cardiovascular Events

In a placebo-controlled clinical trial of CHANTIX administered to patients with stable cardiovascular disease, with approximately 350 patients per treatment arm, all-cause and cardiovascular mortality was lower in patients treated with CHANTIX, but certain nonfatal cardiovascular events occurred more frequently in patients treated with CHANTIX than in patients treated with placebo [see Adverse Reactions (6.1)]. Table 1 below shows the incidence of deaths and of selected nonfatal serious cardiovascular events occurring more frequently in the CHANTIX arm compared to the placebo arm. These events were adjudicated by an independent blinded committee. Nonfatal serious cardiovascular events not listed occurred at the same incidence or more commonly in the placebo arm. Patients with more than one cardiovascular event of the same type are counted only once per row. Some of the patients requiring coronary revascularization underwent the procedure as part of management of nonfatal MI and hospitalization for angina.

Table 1. Mortality and Adjudicated Nonfatal Serious Cardiovascular Events in the Placebo-Controlled CHANTIX Trial in Patients with Stable Cardiovascular Disease
Mortality and Cardiovascular Events CHANTIX
(N=353)
n (%)
Placebo
(N=350)
n (%)
Mortality (Cardiovascular & All-cause up to 52 wks)
  Cardiovascular death 1 (0.3) 2 (0.6)
  All-cause mortality 2 (0.6) 5 (1.4)
 
Nonfatal Cardiovascular Events (rate on CHANTIX > Placebo)
  Up to 30 days after treatment
    Nonfatal myocardial infarction 4 (1.1) 1 (0.3)
    Nonfatal Stroke 2 (0.6) 0 (0)
  Beyond 30 days after treatment & up to 52 weeks
    Nonfatal myocardial infarction 3 (0.8) 2 (0.6)
    Need for coronary revascularization 7 (2.0) 2 (0.6)
    Hospitalization for angina pectoris 6 (1.7) 4 (1.1)
    Transient ischemia attack 1 (0.3) 0 (0)
    New diagnosis of peripheral vascular disease (PVD) or admission for a PVD procedure 5 (1.4) 2 (0.6)

A meta-analysis of 15 clinical trials of ≥ 12 weeks treatment duration, including 7002 patients (4190 CHANTIX, 2812 placebo), was conducted to systematically assess the cardiovascular safety of CHANTIX. The study in patients with stable cardiovascular disease described above was included in the meta-analysis. There were lower rates of all-cause mortality (CHANTIX 6 [0.14%]; placebo 7 [0.25%]) and cardiovascular mortality (CHANTIX 2 [0.05%]; placebo 2 [0.07%]) in the CHANTIX arms compared with the placebo arms in the meta-analysis.

The key cardiovascular safety analysis included occurrence and timing of a composite endpoint of Major Adverse Cardiovascular Events (MACE), defined as cardiovascular death, nonfatal MI, and nonfatal stroke. These events included in the endpoint were adjudicated by a blinded, independent committee. Overall, a small number of MACE occurred in the trials included in the meta-analysis, as described in Table 2. These events occurred primarily in patients with known cardiovascular disease.

Table 2. Number of MACE cases, Hazard Ratio and Rate Difference in a Meta-Analysis of 15 Clinical Trials Comparing CHANTIX to Placebo*
CHANTIX
N=4190
Placebo
N=2812
*
Includes MACE occurring up to 30 days post-treatment.
MACE cases, n (%) 13 (0.31%) 6 (0.21%)
Patient-years of exposure 1316 839
Hazard Ratio (95% CI)
1.95 (0.79, 4.82)
Rate Difference per 1,000 patient-years (95% CI)
6.30 (-2.40, 15.10)

The meta-analysis showed that exposure to CHANTIX resulted in a hazard ratio for MACE of 1.95 (95% confidence interval from 0.79 to 4.82) for patients up to 30 days after treatment; this is equivalent to an estimated increase of 6.3 MACE events per 1,000 patient-years of exposure. The meta-analysis showed higher rates of CV endpoints in patients on CHANTIX relative to placebo across different time frames and pre-specified sensitivity analyses, including various study groupings and CV outcomes. Although these findings were not statistically significant they were consistent. Because the number of events was small overall, the power for finding a statistically significant difference in a signal of this magnitude is low.

CHANTIX was not studied in patients with unstable cardiovascular disease or cardiovascular events occurring within two months before screening. Patients should be advised to notify a healthcare provider of new or worsening symptoms of cardiovascular disease. The risks of CHANTIX should be weighed against the benefits of its use in smokers with cardiovascular disease. Smoking is an independent and major risk factor for cardiovascular disease. CHANTIX has been demonstrated to increase the likelihood of abstinence from smoking for as long as one year compared to treatment with placebo.

5.6 Somnambulism

Cases of somnambulism have been reported in patients taking CHANTIX. Some cases described harmful behavior to self, others, or property. Instruct patients to discontinue CHANTIX and notify their healthcare provider if they experience somnambulism [see Adverse Reactions (6.2)].

5.7 Angioedema and Hypersensitivity Reactions

There have been postmarketing reports of hypersensitivity reactions including angioedema in patients treated with CHANTIX [see Adverse Reactions (6.2), Patient Counseling Information (17)]. Clinical signs included swelling of the face, mouth (tongue, lips, and gums), extremities, and neck (throat and larynx). There were infrequent reports of life-threatening angioedema requiring emergent medical attention due to respiratory compromise. Instruct patients to discontinue CHANTIX and immediately seek medical care if they experience these symptoms.

5.8 Serious Skin Reactions

There have been postmarketing reports of rare but serious skin reactions, including Stevens-Johnson Syndrome and erythema multiforme, in patients using CHANTIX [see Adverse Reactions (6.2)]. As these skin reactions can be life-threatening, instruct patients to stop taking CHANTIX and contact a healthcare provider immediately at the first appearance of a skin rash with mucosal lesions or any other signs of hypersensitivity.

5.9 Nausea

Nausea was the most common adverse reaction reported with CHANTIX treatment. Nausea was generally described as mild or moderate and often transient; however, for some patients, it was persistent over several months. The incidence of nausea was dose-dependent. Initial dose-titration was beneficial in reducing the occurrence of nausea. For patients treated to the maximum recommended dose of 1 mg twice daily following initial dosage titration, the incidence of nausea was 30% compared with 10% in patients taking a comparable placebo regimen. In patients taking CHANTIX 0.5 mg twice daily following initial titration, the incidence was 16% compared with 11% for placebo. Approximately 3% of patients treated with CHANTIX 1 mg twice daily in studies involving 12 weeks of treatment discontinued treatment prematurely because of nausea. For patients with intolerable nausea, a dose reduction should be considered.

6 ADVERSE REACTIONS

The following serious adverse reactions were reported in postmarketing experience and are discussed in greater detail in other sections of the labeling:

In the placebo-controlled premarketing studies, the most common adverse events associated with CHANTIX (>5% and twice the rate seen in placebo-treated patients) were nausea, abnormal (vivid, unusual, or strange) dreams, constipation, flatulence, and vomiting.

The treatment discontinuation rate due to adverse events in patients dosed with 1 mg twice daily was 12% for CHANTIX, compared to 10% for placebo in studies of three months' treatment. In this group, the discontinuation rates that are higher than placebo for the most common adverse events in CHANTIX-treated patients were as follows: nausea (3% vs. 0.5% for placebo), insomnia (1.2% vs. 1.1% for placebo), and abnormal dreams (0.3% vs. 0.2% for placebo).

Smoking cessation, with or without treatment, is associated with nicotine withdrawal symptoms and has also been associated with the exacerbation of underlying psychiatric illness.

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, the adverse reactions rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

During the premarketing development of CHANTIX, over 4500 subjects were exposed to CHANTIX, with over 450 treated for at least 24 weeks and approximately 100 for a year. Most study participants were treated for 12 weeks or less.

The most common adverse event associated with CHANTIX treatment is nausea, occurring in 30% of patients treated at the recommended dose, compared with 10% in patients taking a comparable placebo regimen [see Warnings and Precautions (5.9)].

Table 3 shows the adverse events for CHANTIX and placebo in the 12- week fixed dose premarketing studies with titration in the first week [Studies 2 (titrated arm only), 4, and 5]. Adverse events were categorized using the Medical Dictionary for Regulatory Activities (MedDRA, Version 7.1).

MedDRA High Level Group Terms (HLGT) reported in ≥ 5% of patients in the CHANTIX 1 mg twice daily dose group, and more commonly than in the placebo group, are listed, along with subordinate Preferred Terms (PT) reported in ≥ 1% of CHANTIX patients (and at least 0.5% more frequent than placebo). Closely related Preferred Terms such as 'Insomnia', 'Initial insomnia', 'Middle insomnia', 'Early morning awakening' were grouped, but individual patients reporting two or more grouped events are only counted once.

Table 3: Common Treatment Emergent AEs (%) in the Fixed-Dose, Placebo-Controlled Studies (HLGTs ≥ 5% of patients in the 1 mg BID CHANTIX Group and more commonly than Placebo and PT ≥ 1% in the 1 mg BID CHANTIX Group, and 1 mg BID CHANTIX at least 0.5% more than Placebo)
SYSTEM ORGAN CLASS
High Level Group Term
CHANTIX
0.5 mg BID
CHANTIX
1 mg BID
Placebo
Preferred Term N=129 N=821 N=805
*
Includes PTs Abdominal (pain, pain upper, pain lower, discomfort, tenderness, distension) and Stomach discomfort
Includes PTs Insomnia/Initial insomnia/Middle insomnia/Early morning awakening
GASTROINTESTINAL (GI)
  GI Signs and Symptoms
    Nausea 16 30 10
    Abdominal Pain * 5 7 5
    Flatulence 9 6 3
    Dyspepsia 5 5 3
    Vomiting 1 5 2
  GI Motility/Defecation Conditions
    Constipation 5 8 3
    Gastroesophageal reflux disease 1 1 0
  Salivary Gland Conditions
    Dry mouth 4 6 4
PSYCHIATRIC DISORDERS
  Sleep Disorder/Disturbances
    Insomnia 19 18 13
    Abnormal dreams 9 13 5
    Sleep disorder 2 5 3
    Nightmare 2 1 0
NERVOUS SYSTEM
  Headaches
    Headache 19 15 13
  Neurological Disorders NEC
    Dysgeusia 8 5 4
    Somnolence 3 3 2
    Lethargy 2 1 0
GENERAL DISORDERS
  General Disorders NEC
  Fatigue/Malaise/Asthenia 4 7 6
RESPIR/THORACIC/MEDIAST
  Respiratory Disorders NEC
    Rhinorrhea 0 1 0
    Dyspnea 2 1 1
    Upper Respiratory Tract Disorder 7 5 4
SKIN/SUBCUTANEOUS TISSUE
  Epidermal and Dermal Conditions
    Rash 1 3 2
    Pruritis 0 1 1
METABOLISM & NUTRITION
  Appetite/General Nutrition Disorders
    Increased appetite 4 3 2
    Decreased appetite/Anorexia 1 2 1

The overall pattern and frequency of adverse events during the longer-term premarketing trials was similar to those described in Table 3, though several of the most common events were reported by a greater proportion of patients with long-term use (e.g., nausea was reported in 40% of patients treated with CHANTIX 1 mg twice daily in a one year study, compared to 8% of placebo-treated patients).

Following is a list of treatment-emergent adverse events reported by patients treated with CHANTIX during all premarketing clinical trials and updated based on pooled data from 18 placebo-controlled pre- and post-marketing studies, including approximately 5,000 patients treated with varenicline. Adverse events were categorized using MedDRA, Version 16.0. The listing does not include those events already listed in the previous tables or elsewhere in labeling, those events for which a drug cause was remote, those events which were so general as to be uninformative, and those events reported only once which did not have a substantial probability of being acutely life-threatening.

Blood and Lymphatic System Disorders. Infrequent: anemia, lymphadenopathy. Rare: leukocytosis, splenomegaly, thrombocytopenia.

Cardiac Disorders. Infrequent: angina pectoris, myocardial infarction, palpitations, tachycardia. Rare: acute coronary syndrome, arrhythmia, atrial fibrillation, bradycardia, cardiac flutter, cor pulmonale, coronary artery disease, ventricular extrasystoles.

Ear and Labyrinth Disorders. Infrequent: tinnitus, vertigo. Rare: deafness, Meniere's disease.

Endocrine Disorders. Infrequent: thyroid gland disorders.

Eye Disorders. Infrequent: conjunctivitis, eye irritation, eye pain, vision blurred, visual impairment. Rare: blindness transient, cataract subcapsular, dry eye, night blindness, ocular vascular disorder, photophobia, vitreous floaters.

Gastrointestinal Disorders. Frequent: diarrhea, toothache. Infrequent: dysphagia, eructation, gastritis, gastrointestinal hemorrhage, mouth ulceration. Rare: enterocolitis, esophagitis, gastric ulcer, intestinal obstruction, pancreatitis acute.

General Disorders and Administration Site Conditions. Frequent: chest pain. Infrequent: chest discomfort, chills, edema, influenza-like illness, pyrexia.

Hepatobiliary Disorders. Rare: gall bladder disorder.

Investigations. Frequent: liver function test abnormal, weight increased. Infrequent: electrocardiogram abnormal. Rare: muscle enzyme increased, urine analysis abnormal.

Metabolism and Nutrition Disorders. Infrequent: diabetes mellitus, hypoglycemia. Rare: hyperlipidemia, hypokalemia.

Musculoskeletal and Connective Tissue Disorders. Frequent: arthralgia, back pain, myalgia. Infrequent: arthritis, muscle cramp, musculoskeletal pain. Rare: myositis, osteoporosis.

Nervous System Disorders. Frequent: disturbance in attention, dizziness. Infrequent: amnesia, convulsion, migraine, parosmia, syncope, tremor. Rare: balance disorder, cerebrovascular accident, dysarthria, mental impairment, multiple sclerosis, VIIth nerve paralysis, nystagmus, psychomotor hyperactivity, psychomotor skills impaired, restless legs syndrome, sensory disturbance, transient ischemic attack, visual field defect.

Psychiatric Disorders. Infrequent: dissociation, libido decreased, mood swings, thinking abnormal. Rare: bradyphrenia, disorientation, euphoric mood.

Renal and Urinary Disorders. Infrequent: nocturia, pollakiuria, urine abnormality. Rare: nephrolithiasis, polyuria, renal failure acute, urethral syndrome, urinary retention.

Reproductive System and Breast Disorders. Frequent: menstrual disorder. Infrequent: erectile dysfunction. Rare: sexual dysfunction.

Respiratory, Thoracic and Mediastinal Disorders. Frequent: respiratory disorders. Infrequent: asthma, epistaxis, rhinitis allergic, upper respiratory tract inflammation. Rare: pleurisy, pulmonary embolism.

Skin and Subcutaneous Tissue Disorders. Infrequent: acne, dry skin, eczema, erythema, hyperhidrosis, urticaria. Rare: photosensitivity reaction, psoriasis.

Vascular Disorders. Infrequent: hot flush. Rare: thrombosis.

CHANTIX has also been studied in postmarketing trials including (1) a trial conducted in patients with chronic obstructive pulmonary disease (COPD), (2) a trial conducted in generally healthy patients (similar to those in the premarketing studies) in which they were allowed to select a quit date between days 8 and 35 of treatment ("alternative quit date instruction trial"), (3) a trial conducted in patients who did not succeed in stopping smoking during prior CHANTIX therapy, or who relapsed after treatment ("re-treatment trial"), (4) a trial conducted in patients with stable cardiovascular disease, (5) a trial conducted in patients with stable schizophrenia or schizoaffective disorder, (6) a trial conducted in patients with major depressive disorder, (7) a postmarketing neuropsychiatric safety outcome trial in patients without or with a history of psychiatric disorder, and (8) a trial in patients who were not able or willing to quit abruptly and who were instructed to quit gradually ("gradual approach to quitting smoking trial").

Adverse events in the trial of patients with COPD, in the alternative quit date instruction trial, and in the gradual approach to quitting smoking trial were similar to those observed in premarketing studies. In the re-treatment trial, the profile of common adverse events was similar to that previously reported, but, in addition, varenicline-treated patients also commonly reported diarrhea (6% vs. 4% in placebo-treated patients), depressed mood disorders and disturbances (6% vs. 1%), and other mood disorders and disturbances (5% vs. 2%).

In the trial of patients with stable cardiovascular disease, more types and a greater number of cardiovascular events were reported compared to premarketing studies. Treatment-emergent (on-treatment or 30 days after treatment) cardiovascular events reported with a frequency ≥ 1% in either treatment group in this study were angina pectoris (3.7% and 2.0% for varenicline and placebo, respectively), chest pain (2.5% vs. 2.3%), peripheral edema (2.0% vs. 1.1%), hypertension (1.4% vs. 2.6%), and palpitations (0.6 % vs. 1.1%). Deaths and serious cardiovascular events occurring over the 52 weeks of the study (treatment emergent and non-treatment emergent) were adjudicated by a blinded, independent committee. The following treatment-emergent adjudicated events occurred with a frequency ≥ 1% in either treatment group: nonfatal MI (1.1% vs. 0.3% for varenicline and placebo, respectively), and hospitalization for angina pectoris (0.6% vs. 1.1%). During non-treatment follow-up to 52 weeks, the adjudicated events included need for coronary revascularization (2.0% vs. 0.6%), hospitalization for angina pectoris (1.7% vs. 1.1%), and new diagnosis of peripheral vascular disease (PVD) or admission for a PVD procedure (1.4% vs. 0.6%). Some of the patients requiring coronary revascularization underwent the procedure as part of management of nonfatal MI and hospitalization for angina. Cardiovascular death occurred in 0.3% of patients in the varenicline arm and 0.6% of patients in the placebo arm over the course of the 52-week study.

In the trial of patients with stable schizophrenia or schizoaffective disorder, 128 smokers on antipsychotic medication were randomized 2:1 to varenicline (1 mg twice daily) or placebo for 12 weeks with 12-week non-drug follow-up. The most common adverse events in patients taking varenicline were nausea (24% vs. 14.0% on placebo), headache (11% vs. 19% on placebo) and vomiting (11% vs. 9% on placebo). Among reported neuropsychiatric adverse events, insomnia was the only event that occurred in either treatment group in ≥5% of subjects at a rate higher in the varenicline group than in placebo (10% vs. 5%). These common and neuropsychiatric adverse events occurred on treatment or within 30 days after the last dose of study drug. There was no consistent worsening of schizophrenia in either treatment group as measured by the Positive and Negative Syndrome Scale. There were no overall changes in extra-pyramidal signs, as measured by the Simpson-Angus Rating Scale. The Columbia-Suicide Severity Rating Scale was administered at baseline and at clinic visits during the treatment and non-treatment follow-up phases. Over half of the patients had a lifetime history of suicidal behavior and/or ideation (62% on varenicline vs. 51% on placebo), but at baseline, no patients in the varenicline group reported suicidal behavior and/or ideation vs. one patient in the placebo group (2%). Suicidal behavior and/or ideation were reported in 11% of the varenicline-treated and 9% of the placebo-treated patients during the treatment phase. During the post-treatment phase, suicidal behavior and/or ideation were reported in 11% of patients in the varenicline group and 5% of patients in the placebo group. Many of the patients reporting suicidal behavior and ideation in the follow-up phase had not reported such experiences in the treatment phase. However, no new suicidal ideation or behavior emerged in either treatment group shortly (within one week) after treatment discontinuation (a phenomenon noted in postmarketing reporting). There were no completed suicides. There was one suicide attempt in a varenicline-treated patient. The limited data available from this single smoking cessation study are not sufficient to allow conclusions to be drawn.

In the trial of patients with major depressive disorder, the most common adverse events (≥ 10%) in subjects taking varenicline were nausea (27% vs. 10% on placebo), headache (17 vs. 11%), abnormal dreams (11% vs. 8%), insomnia (11% vs. 5%) and irritability (11% vs. 8%). Additionally, the following psychiatric AEs were reported in ≥ 2% of patients in either treatment group (varenicline or placebo, respectively): anxiety (7% vs. 9%), agitation (7% vs. 4%), depressed mood disorders and disturbances (11% vs. 9%), tension (4% vs. 3%), hostility (2% vs. 0.4%) and restlessness (2% vs. 2%). Patients treated with varenicline were more likely than patients treated with placebo to report one of various events related to hostility and aggression (3% vs. 1%). Psychiatric scales showed no differences between the varenicline and placebo groups and no overall worsening of depression during the study in either treatment group. The percentage of subjects with suicidal ideation and/or behavior was similar between the varenicline and placebo groups during treatment (6% and 8%, respectively) and the non-treatment follow-up (6% and 6%, respectively). There was one event of intentional self-injury/possible suicide attempt during treatment (Day 73) in a subject in the placebo group. Suicide could not be ruled out in one subject who died by an overdose of illicit drugs 76 days after last dose of study drug in the varenicline group.

In the trial of patients without or with a history of psychiatric disorder, the most common adverse events in subjects treated with varenicline were similar to those observed in premarketing studies. Adverse events reported in ≥ 10% of subjects treated with varenicline in the entire study population were nausea (25% vs. 7% on placebo) and headache (12% vs. 10% on placebo). Additionally, the following psychiatric adverse events were reported in ≥ 2% of patients in either treatment group (varenicline vs. placebo) by cohort. For the non-psychiatric cohort, these adverse events were abnormal dreams (8% vs. 4%), agitation (3% vs. 3%), anxiety (5% vs. 6%), depressed mood (3% vs. 3%), insomnia (10% vs. 7%), irritability (3% vs. 4%), sleep disorder (3% vs. 2%). For the psychiatric cohort, these adverse events were abnormal dreams (12% vs. 5%), agitation (5% vs. 4%), anxiety (8% vs. 6%), depressed mood (5% vs. 5%), depression (5% vs. 5%), insomnia (9% vs. 7%), irritability (5% vs. 7%), nervousness (2% vs. 3%), sleep disorder (3% vs. 2%).

6.2 Postmarketing Experience

The following adverse events have been reported during post-approval use of CHANTIX. Because these events are reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

There have been reports of depression, mania, psychosis, hallucinations, paranoia, delusions, homicidal ideation, aggression, hostility, anxiety, and panic, as well as suicidal ideation, suicide attempt, and completed suicide in patients attempting to quit smoking while taking CHANTIX [see Warnings and Precautions (5.1)].

There have been postmarketing reports of new or worsening seizures in patients treated with CHANTIX [see Warnings and Precautions (5.2)].

There have been postmarketing reports of patients experiencing increased intoxicating effects of alcohol while taking CHANTIX. Some reported neuropsychiatric events, including unusual and sometimes aggressive behavior [see Warnings and Precautions (5.1) and (5.3)].

There have been reports of hypersensitivity reactions, including angioedema [see Warnings and Precautions (5.7)].

There have also been reports of serious skin reactions, including Stevens-Johnson Syndrome and erythema multiforme, in patients taking CHANTIX [see Warnings and Precautions (5.8)].

There have been reports of myocardial infarction (MI) and cerebrovascular accident (CVA) including ischemic and hemorrhagic events in patients taking CHANTIX. In the majority of the reported cases, patients had pre-existing cardiovascular disease and/or other risk factors. Although smoking is a risk factor for MI and CVA, based on temporal relationship between medication use and events, a contributory role of varenicline cannot be ruled out [see Warnings and Precautions (5.5)].

There have been reports of hyperglycemia in patients following initiation of CHANTIX.

There have been reports of somnambulism, some resulting in harmful behavior to self, others, or property in patients treated with CHANTIX [see Warnings and Precautions (5.6)].

1 INDICATIONS AND USAGE

CHANTIX is indicated for use as an aid to smoking cessation treatment.

COLESTID® GRANULES (colestipol HCl for oral suspension)

These highlights do not include all the information needed to use COLESTID GRANULES safety and effectively. See full prescribing information for COLESTID GRANULES.

CONTRAINDICATIONS

COLESTID Granules and FLAVORED COLESTID Granules are contraindicated in those individuals who have shown hypersensitivity to any of its components.

WARNINGS

TO AVOID ACCIDENTAL INHALATION OR ESOPHAGEAL DISTRESS, COLESTID GRANULES AND FLAVORED COLESTID GRANULES SHOULD NOT BE TAKEN IN ITS DRY FORM. ALWAYS MIX COLESTID AND FLAVORED COLESTID WITH WATER OR OTHER FLUIDS BEFORE INGESTING.

PHENYLKETONURICS: FLAVORED COLESTID CONTAINS 18.2 MG PHENYLALANINE PER 7.5-GRAM DOSE.


PRECAUTIONS

Prior to initiating therapy with COLESTID Granules and FLAVORED COLESTID Granules, secondary causes of hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, alcoholism), should be excluded, and a lipid profile performed to assess Total cholesterol, HDL-C, and triglycerides (TG). For individuals with TG less than 400 mg/dL (<4.5 mmol/L), LDL-C can be estimated using the following equation:

LDL-C = Total cholesterol - [ (Triglycerides / 5)+HDL-C]

For TG levels >400 mg/dL, this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. In hypertriglyceridemic patients, LDL-C may be low or normal despite elevated Total-C. In such cases COLESTID and FLAVORED COLESTID may not be indicated.

Because it sequesters bile acids, colestipol hydrochloride may interfere with normal fat absorption and thus may reduce absorption of folic acid and fat soluble vitamins such as A, D, and K.

Chronic use of colestipol hydrochloride may be associated with an increased bleeding tendency due to hypoprothrombinemia from vitamin K deficiency. This will usually respond promptly to parenteral vitamin K1 and recurrences can be prevented by oral administration of vitamin K1.

Serum cholesterol and triglyceride levels should be determined periodically based on NCEP guidelines to confirm a favorable initial and adequate long-term response.

COLESTID and FLAVORED COLESTID may produce or severely worsen pre-existing constipation. The dosage should be increased gradually in patients to minimize the risk of developing fecal impaction. In patients with pre-existing constipation, the starting dose should be 1 packet or 1 scoop once daily for 5–7 days, increasing to twice daily with monitoring of constipation and of serum lipoproteins, at least twice, 4–6 weeks apart. Increased fluid and fiber intake should be encouraged to alleviate constipation and a stool softener may occasionally be indicated. If the initial dose is well tolerated, the dose may be increased as needed by one dose/day (at monthly intervals) with periodic monitoring of serum lipoproteins. If constipation worsens or the desired therapeutic response is not achieved at one to six doses/day, combination therapy or alternate therapy should be considered. Particular effort should be made to avoid constipation in patients with symptomatic coronary artery disease. Constipation associated with COLESTID and FLAVORED COLESTID may aggravate hemorrhoids.

While there have been no reports of hypothyroidism induced in individuals with normal thyroid function, the theoretical possibility exists, particularly in patients with limited thyroid reserve.

Since colestipol hydrochloride is a chloride form of an anion exchange resin, there is a possibility that prolonged use may lead to the development of hyperchloremic acidosis.

Carcinogenesis, mutagenesis and impairment of fertility

In studies conducted in rats in which cholestyramine resin (a bile acid sequestering agent similar to colestipol hydrochloride) was used as a tool to investigate the role of various intestinal factors, such as fat, bile salts and microbial flora, in the development of intestinal tumors induced by potent carcinogens, the incidence of such tumors was observed to be greater in cholestyramine resin treated rats than in control rats.

The relevance of this laboratory observation from studies in rats with cholestyramine resin to the clinical use of colestipol hydrochloride is not known. In the LRC-CPPT study referred to above, the total incidence of fatal and non-fatal neoplasms was similar in both treatment groups. When the many different categories of tumors are examined, various alimentary system cancers were somewhat more prevalent in the cholestyramine group. The small numbers and the multiple categories prevent conclusions from being drawn. Further follow-up of the LRC-CPPT participants by the sponsors of that study is planned for cause-specific mortality and cancer morbidity.

When colestipol hydrochloride was administered in the diet to rats for 18 months, there was no evidence of any drug related intestinal tumor formation. In the Ames assay, colestipol hydrochloride was not mutagenic.

Use in Pregnancy

Since colestipol hydrochloride is essentially not absorbed systemically (less than 0.17% of the dose), it is not expected to cause fetal harm when administered during pregnancy in recommended dosages. There are no adequate and well controlled studies in pregnant women, and the known interference with absorption of fat soluble vitamins may be detrimental even in the presence of supplementation. The use of COLESTID or FLAVORED COLESTID in pregnancy or by women of childbearing potential requires that the potential benefits of drug therapy be weighed against possible hazards to the mother or child.

Nursing Mother

Caution should be exercised when COLESTID or FLAVORED COLESTID is administered to a nursing mother. The possible lack of proper vitamin absorption described in the "pregnancy" section may have an effect on nursing infants.

Pediatric Use

Safety and effectiveness in the pediatric population have not been established.

Drug Interactions

Since colestipol hydrochloride is an anion exchange resin, it may have a strong affinity for anions other than the bile acids. In vitro studies have indicated that colestipol hydrochloride binds a number of drugs. Therefore, COLESTID and FLAVORED COLESTID resin may delay or reduce the absorption of concomitant oral medication. The interval between the administration of COLESTID and FLAVORED COLESTID and any other medication should be as long as possible. Patients should take other drugs at least one hour before or four hours after COLESTID and FLAVORED COLESTID to avoid impeding their absorption.

Repeated doses of colestipol hydrochloride given prior to a single dose of propranolol in human trials have been reported to decrease propranolol absorption. However, in a follow-up study in normal subjects, single dose administration of colestipol hydrochloride and propranolol and twice-a-day administration for 5 days of both agents did not effect the extent of propranolol absorption, but had a small yet statistically significant effect on its rate of absorption; the time to reach maximum concentration was delayed 30 minutes. Effects on the absorption of other beta-blockers have not been determined. Therefore, patients on propranolol should be observed when COLESTID or FLAVORED COLESTID is either added or deleted from a therapeutic regimen.

Studies in humans show that the absorption of chlorothiazide as reflected in urinary excretion is markedly decreased even when administered one hour before colestipol hydrochloride. The absorption of tetracycline, furosemide, penicillin G, hydrochlorothiazide, and gemfibrozil was significantly decreased when given simultaneously with colestipol hydrochloride; these drugs were not tested to determine the effect of administration one hour before colestipol hydrochloride.

No depressant effect on blood levels in humans was noted when colestipol hydrochloride was administered with any of the following drugs: aspirin, clindamycin, clofibrate, methyldopa, nicotinic acid (niacin), tolbutamide, phenytoin or warfarin. Particular caution should be observed with digitalis preparations since there are conflicting results for the effect of colestipol hydrochloride on the availability of digoxin and digitoxin. The potential for binding of these drugs if given concomitantly is present. Discontinuing colestipol hydrochloride could pose a hazard to health if a potentially toxic drug that is significantly bound to the resin has been titrated to a maintenance level while the patient was taking colestipol hydrochloride.

Bile acid binding resins may also interfere with the absorption of oral phosphate supplements and hydrocortisone.

A study has shown that cholestyramine binds bile acids and reduces mycophenolic acid exposure. As colestipol also binds bile acids, colestipol may reduce mycophenolic acid exposure and potentially reduce efficacy of mycophenolate mofetil.

ADVERSE REACTIONS

Gastrointestinal

The most common adverse reactions are confined to the gastrointestinal tract. To achieve minimal GI disturbance with an optimal LDL-cholesterol lowering effect, a gradual increase of dosage starting with one dose/day is recommended. Constipation is the major single complaint and at times is severe. Most instances of constipation are mild, transient, and controlled with standard treatment. Increased fluid intake and inclusion of additional dietary fiber should be the first step; a stool softener may be added if needed. Some patients require decreased dosage or discontinuation of therapy. Hemorrhoids may be aggravated.

Other, less frequent gastrointestinal complaints consist of abdominal discomfort (abdominal pain and cramping), intestinal gas, (bloating and flatulence), indigestion and heartburn, diarrhea and loose stools, and nausea and vomiting. Bleeding hemorrhoids and blood in the stool have been infrequently reported. Peptic ulceration, cholecystitis, and cholelithiasis have been rarely reported in patients receiving colestipol hydrochloride granules, and are not necessarily drug related.

Transient and modest elevations of aspartate aminotransferase (AST, SGOT), alanine aminotransferase (ALT, SGPT) and alkaline phosphatase were observed on one or more occasions in various patients treated with colestipol hydrochloride.

The following non-gastrointestinal adverse reactions have been reported with generally equal frequency in patients receiving COLESTID Granules, FLAVORED COLESTID Granules, or placebo in clinical studies:

Cardiovascular

Chest pain, angina, and tachycardia have been infrequently reported.

Hypersensitivity

Rash has been infrequently reported. Urticaria and dermatitis have been rarely noted in patients receiving colestipol hydrochloride granules.

Musculoskeletal

Musculoskeletal pain, aches and pains in the extremities, joint pains, arthritis, and backache have been reported.

Neurologic

Headache, migraine headache and sinus headache have been reported. Other infrequently reported complaints include dizziness, light-headedness, and insomnia.

Miscellaneous

Anorexia, fatigue, weakness, shortness of breath, and swelling of the hands or feet, have been infrequently reported.

INDICATIONS AND USAGE

Since no drug is innocuous, strict attention should be paid to the indications and contraindications, particularly when selecting drugs for chronic long-term use.

COLESTID Granules and FLAVORED COLESTID Granules are indicated as adjunctive therapy to diet for the reduction of elevated serum total and low-density lipoprotein (LDL) cholesterol in patients with primary hypercholesterolemia (elevated low density lipoproteins [LDL] cholesterol) who do not respond adequately to diet. Generally, COLESTID and FLAVORED COLESTID have no clinically significant effect on serum triglycerides, but with its use triglyceride levels may be raised in some patients.

Therapy with lipid-altering agents should be a component of multiple risk factor intervention in those individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Treatment should begin and continue with dietary therapy (see NCEP guidelines). A minimum of six months of intensive dietary therapy and counseling should be carried out prior to initiation of drug therapy. Shorter periods may be considered in patients with severe elevations of LDL-C or with definite CHD.

According to the NCEP guidelines, the goal of treatment is to lower LDL-C, and LDL-C is to be used to initiate and assess treatment response. Only if LDL-C levels are not available, should the Total-C be used to monitor therapy. The NCEP treatment guidelines are shown below.

LDL-Cholesterol
mg/dL (mmol/L)
Definite Atherosclerotic Disease* Two or More Other Risk Factors Initiation Level Goal
*
Coronary heart disease or peripheral vascular disease (including symptomatic carotid artery disease).
Other risk factors for coronary heart disease (CHD) include: age (males: ≥45 years; females: ≥55 years or premature menopause without estrogen replacement therapy); family history of premature CHD; current cigarette smoking; hypertension; confirmed HDL-C <35 mg/dL (0.91 mmol/L); and diabetes mellitus. Subtract one risk factor if HDL-C is ≥60 mg/dL (1.6 mmol/L).
No No ≥190
(≥4.9)
<160
(<4.1)
No Yes ≥160
(≥4.1)
<130
(<3.4)
Yes Yes or No ≥130
(≥3.4)
≤100
(≤2.6)

COLESTID® TABLETS (micronized colestipol HCl tablets)

These highlights do not include all the information needed to use COLESTID TABLETS safety and effectively. See full prescribing information for COLESTID TABLETS.

CONTRAINDICATIONS

COLESTID Tablets are contraindicated in those individuals who have shown hypersensitivity to any of their components.

PRECAUTIONS

Prior to initiating therapy with COLESTID Tablets, secondary causes of hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, alcoholism), should be excluded, and a lipid profile performed to assess total cholesterol, HDL-C, and triglycerides (TG). For individuals with TG less than 400 mg/dL (<4.5 mmol/L), LDL-C can be estimated using the following equation:

LDL-C = Total cholesterol − [(Triglycerides/5) + HDL-C]

For TG levels >400 mg/dL, this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. In hypertriglyceridemic patients, LDL-C may be low or normal despite elevated Total-C. In such cases COLESTID Tablets may not be indicated.

Because it sequesters bile acids, colestipol hydrochloride may interfere with normal fat absorption and, thus, may reduce absorption of folic acid and fat soluble vitamins such as A, D, and K.

Chronic use of colestipol hydrochloride may be associated with an increased bleeding tendency due to hypoprothrombinemia from vitamin K deficiency. This will usually respond promptly to parenteral vitamin K1 and recurrences can be prevented by oral administration of vitamin K1.

Serum cholesterol and triglyceride levels should be determined periodically based on NCEP guidelines to confirm a favorable initial and adequate long-term response.

COLESTID Tablets may produce or severely worsen pre-existing constipation. The dosage should be increased gradually in patients to minimize the risk of developing fecal impaction. In patients with pre-existing constipation, the starting dose should be 2 grams once or twice a day. Increased fluid and fiber intake should be encouraged to alleviate constipation and a stool softener may occasionally be indicated. If the initial dose is well tolerated, the dose may be increased as needed by a further 2 to 4 grams/day (at monthly intervals) with periodic monitoring of serum lipoproteins. If constipation worsens or the desired therapeutic response is not achieved at 2 to 16 grams/day, combination therapy or alternate therapy should be considered. Particular effort should be made to avoid constipation in patients with symptomatic coronary artery disease. Constipation associated with COLESTID Tablets may aggravate hemorrhoids.

While there have been no reports of hypothyroidism induced in individuals with normal thyroid function, the theoretical possibility exists, particularly in patients with limited thyroid reserve.

Since colestipol hydrochloride is a chloride form of an anion exchange resin, there is a possibility that prolonged use may lead to the development of hyperchloremia acidosis.

Carcinogenesis, Mutagenesis and Impairment of Fertility

In studies conducted in rats in which cholestyramine resin (a bile acid sequestering agent similar to colestipol hydrochloride) was used as a tool to investigate the role of various intestinal factors, such as fat, bile salts, and microbial flora, in the development of intestinal tumors induced by potent carcinogens, the incidence of such tumors was observed to be greater in cholestyramine resin treated rats than in control rats.

The relevance of this laboratory observation from studies in rats with cholestyramine resin to the clinical use of COLESTID Tablets is not known. In the LRC-CPPT study referred to above, the total incidence of fatal and nonfatal neoplasms was similar in both treatment groups. When the many different categories of tumors are examined, various alimentary system cancers were somewhat more prevalent in the cholestyramine group. The small numbers and the multiple categories prevent conclusions from being drawn. Further follow-up of the LRC-CPPT participants by the sponsors of that study is planned for cause-specific mortality and cancer morbidity. When colestipol hydrochloride was administered in the diet to rats for 18 months, there was no evidence of any drug related intestinal tumor formation. In the Ames assay, colestipol hydrochloride was not mutagenic.

Use in Pregnancy

Since colestipol hydrochloride is essentially not absorbed systemically (less than 0.17% of the dose), it is not expected to cause fetal harm when administered during pregnancy in recommended dosages. There are no adequate and well-controlled studies in pregnant women, and the known interference with absorption of fat-soluble vitamins may be detrimental even in the presence of supplementation. The use of COLESTID tablets in pregnancy or by women of childbearing potential requires that the potential benefits of drug therapy be weighed against possible hazards to the mother or child.

Nursing Mothers

Caution should be exercised when COLESTID Tablets are administered to a nursing mother. The possible lack of proper vitamin absorption described in the "Pregnancy" section may have an effect on nursing infants.

Pediatric Use

Safety and effectiveness in the pediatric population have not been established.

Information for Patients

COLESTID Tablets may be larger than pills you have taken before. If you have had swallowing problems or choking with food, liquids or other tablets or capsules in the past, you should discuss this with your doctor before taking COLESTID Tablets.

It is important that you take COLESTID Tablets correctly:

  1. Always take one tablet at a time and swallow promptly.
  2. Swallow each tablet whole. Do not cut, crush, or chew the tablets.
  3. COLESTID Tablets must be taken with water or another liquid that you prefer. Swallowing the tablets will be easier if you drink plenty of liquid as you swallow each tablet.

Difficulty swallowing and temporary obstruction of the esophagus (the tube between your mouth and stomach) have been rarely reported in patients taking COLESTID Tablets. If a tablet does get stuck after you swallow it, you may notice pressure or discomfort. If this happens to you, you should contact your doctor. Do not take COLESTID Tablets again without your doctor's advice.

If you are taking other medications, you should take them at least one hour before or four hours after taking COLESTID Tablets.

DRUG INTERACTIONS

Since colestipol hydrochloride is an anion exchange resin, it may have a strong affinity for anions other than the bile acids. In vitro studies have indicated that colestipol hydrochloride binds a number of drugs. Therefore, COLESTID Tablets may delay or reduce the absorption of concomitant oral medication. The interval between the administration of COLESTID Tablets and any other medication should be as long as possible. Patients should take other drugs at least one hour before or four hours after COLESTID Tablets to avoid impeding their absorption.

Repeated doses of colestipol hydrochloride given prior to a single dose of propranolol in human trials have been reported to decrease propranolol absorption. However, in a follow-up study in normal subjects, single-dose administration of colestipol hydrochloride and propranolol and twice-a-day administration for 5 days of both agents did not affect the extent of propranolol absorption, but had a small yet statistically significant effect on its rate of absorption; the time to reach maximum concentration was delayed approximately 30 minutes. Effects on the absorption of other beta-blockers have not been determined. Therefore, patients on propranolol should be observed when COLESTID Tablets are either added or deleted from a therapeutic regimen.

Studies in humans show that the absorption of chlorothiazide as reflected in urinary excretion is markedly decreased even when administered one hour before colestipol hydrochloride. The absorption of tetracycline, furosemide, penicillin G, hydrochlorothiazide, and gemfibrozil was significantly decreased when given simultaneously with colestipol hydrochloride; these drugs were not tested to determine the effect of administration one hour before colestipol hydrochloride.

No depressant effect on blood levels in humans was noted when colestipol hydrochloride was administered with any of the following drugs: aspirin, clindamycin, clofibrate, methyldopa, nicotinic acid (niacin), tolbutamide, phenytoin or warfarin. Particular caution should be observed with digitalis preparations since there are conflicting results for the effect of colestipol hydrochloride on the availability of digoxin and digitoxin. The potential for binding of these drugs if given concomitantly is present. Discontinuing colestipol hydrochloride could pose a hazard to health if a potentially toxic drug that is significantly bound to the resin has been titrated to a maintenance level while the patient was taking colestipol hydrochloride.

Bile acid binding resins may also interfere with the absorption of oral phosphate supplements and hydrocortisone.

A study has shown that cholestyramine binds bile acids and reduces mycophenolic acid exposure. As colestipol also binds bile acids, colestipol may reduce mycophenolic acid exposure and potentially reduce efficacy of mycophenolate mofetil.

ADVERSE REACTIONS

Gastrointestinal

The most common adverse reactions are confined to the gastrointestinal tract. To achieve minimal GI disturbance with an optimal LDL-C lowering effect, a gradual increase of dosage starting with 2 grams, once or twice daily is recommended. Constipation is the major single complaint and at times is severe. Most instances of constipation are mild, transient, and controlled with standard treatment. Increased fluid intake and inclusion of additional dietary fiber should be the first step; a stool softener may be added if needed. Some patients require decreased dosage or discontinuation of therapy. Hemorrhoids may be aggravated.

Other, less frequent gastrointestinal complaints consist of abdominal discomfort (abdominal pain and cramping), intestinal gas (bloating and flatulence), indigestion and heartburn, diarrhea and loose stools, and nausea and vomiting. Bleeding hemorrhoids and blood in the stool have been infrequently reported. Peptic ulceration, cholecystitis, and cholelithiasis have been rarely reported in patients receiving colestipol hydrochloride granules, and are not necessarily drug related.

Difficulty swallowing and transient esophageal obstruction have been rarely reported in patients taking COLESTID Tablets.

Transient and modest elevations of aspartate aminotransferase (AST, SGOT), alanine aminotransferase (ALT, SGPT) and alkaline phosphatase were observed on one or more occasions in various patients treated with colestipol hydrochloride.

The following nongastrointestinal adverse reactions have been reported with generally equal frequency in patients receiving COLESTID Tablets, colestipol granules, or placebo in clinical studies:

Cardiovascular

Chest pain, angina, and tachycardia have been infrequently reported.

Hypersensitivity

Rash has been infrequently reported. Urticaria and dermatitis have been rarely noted in patients receiving colestipol hydrochloride granules.

Musculoskeletal

Musculoskeletal pain, aches and pains in the extremities, joint pain and arthritis, and backache have been reported.

Neurologic

Headache, migraine headache, and sinus headache have been reported. Other infrequently reported complaints include dizziness, light-headedness, and insomnia.

Miscellaneous

Anorexia, fatigue, weakness, shortness of breath, and swelling of the hands or feet, have been infrequently reported.

INDICATIONS AND USAGE

Since no drug is innocuous, strict attention should be paid to the indications and contraindications, particularly when selecting drugs for chronic long-term use.

COLESTID Tablets are indicated as adjunctive therapy to diet for the reduction of elevated serum total and LDL-C in patients with primary hypercholesterolemia (elevated LDL-C) who do not respond adequately to diet. Generally, COLESTID Tablets have no clinically significant effect on serum triglycerides, but with their use, triglyceride levels may be raised in some patients.

Therapy with lipid-altering agents should be a component of multiple risk factor intervention in those individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Treatment should begin and continue with dietary therapy (see NCEP guidelines). A minimum of six months of intensive dietary therapy and counseling should be carried out prior to initiation of drug therapy. Shorter periods may be considered in patients with severe elevations of LDL-C or with definite CHD.

According to the NCEP guidelines, the goal of treatment is to lower LDL-C, and LDL-C is to be used to initiate and assess treatment response. Only if LDL-C levels are not available, should the Total-C be used to monitor therapy. The NCEP treatment guidelines are shown below.

LDL-Cholesterol
mg/dL (mmol/L)
Definite Atherosclerotic Disease* Two or More Other Risk Factors Initiation Level Goal
*
Coronary heart disease or peripheral vascular disease (including symptomatic carotid artery disease).
Other risk factors for coronary heart disease (CHD) include: age (males: ≥45 years; female: ≥55 years or premature menopause without estrogen replacement therapy); family history of premature CHD; current cigarette smoking; hypertension; confirmed HDL-C <35 mg/dL (0.91 mmol/L); and diabetes mellitus. Subtract one risk factor if HDL-C is ≥60 mg/dL (1.6 mmol/L).
No No ≥190
(≥4.9)
<160
(<4.1)
No Yes ≥160
(≥4.1)
<130
(<3.4)
Yes Yes or No ≥130
(≥3.4)
≤100
(≤2.6)

CORDARONE® (amiodarone HCl)

These highlights do not include all the information needed to use CORDARONE safety and effectively. See full prescribing information for CORDARONE.

CONTRAINDICATIONS

Cordarone is contraindicated in patients with cardiogenic shock; severe sinus-node dysfunction, causing marked sinus bradycardia; second- or third-degree atrioventricular block; and when episodes of bradycardia have caused syncope (except when used in conjunction with a pacemaker).

Cordarone is contraindicated in patients with a known hypersensitivity to the drug or to any of its components, including iodine.

WARNINGS

Cordarone is intended for use only in patients with the indicated life-threatening arrhythmias because its use is accompanied by substantial toxicity.

Cordarone has several potentially fatal toxicities, the most important of which is pulmonary toxicity (hypersensitivity pneumonitis or interstitial/alveolar pneumonitis) that has resulted in clinically manifest disease at rates as high as 10 to 17% in some series of patients with ventricular arrhythmias given doses around 400 mg/day, and as abnormal diffusion capacity without symptoms in a much higher percentage of patients. Pulmonary toxicity has been fatal about 10% of the time. Liver injury is common with Cordarone, but is usually mild and evidenced only by abnormal liver enzymes. Overt liver disease can occur, however, and has been fatal in a few cases. Like other antiarrhythmics, Cordarone can exacerbate the arrhythmia, e.g., by making the arrhythmia less well tolerated or more difficult to reverse. This has occurred in 2 to 5% of patients in various series, and significant heart block or sinus bradycardia has been seen in 2 to 5%. All of these events should be manageable in the proper clinical setting in most cases. Although the frequency of such proarrhythmic events does not appear greater with Cordarone than with many other agents used in this population, the effects are prolonged when they occur.

Even in patients at high risk of arrhythmic death, in whom the toxicity of Cordarone is an acceptable risk, Cordarone poses major management problems that could be life-threatening in a population at risk of sudden death, so that every effort should be made to utilize alternative agents first.

The difficulty of using Cordarone effectively and safely itself poses a significant risk to patients. Patients with the indicated arrhythmias must be hospitalized while the loading dose of Cordarone is given, and a response generally requires at least one week, usually two or more. Because absorption and elimination are variable, maintenance-dose selection is difficult, and it is not unusual to require dosage decrease or discontinuation of treatment. In a retrospective survey of 192 patients with ventricular tachyarrhythmias, 84 required dose reduction and 18 required at least temporary discontinuation because of adverse effects, and several series have reported 15 to 20% overall frequencies of discontinuation due to adverse reactions. The time at which a previously controlled life-threatening arrhythmia will recur after discontinuation or dose adjustment is unpredictable, ranging from weeks to months. The patient is obviously at great risk during this time and may need prolonged hospitalization. Attempts to substitute other antiarrhythmic agents when Cordarone must be stopped will be made difficult by the gradually, but unpredictably, changing amiodarone body burden. A similar problem exists when Cordarone is not effective; it still poses the risk of an interaction with whatever subsequent treatment is tried.

Mortality

In the National Heart, Lung and Blood Institute's Cardiac Arrhythmia Suppression Trial (CAST), a long-term, multi-centered, randomized, double-blind study in patients with asymptomatic non-life-threatening ventricular arrhythmias who had had myocardial infarctions more than six days but less than two years previously, an excessive mortality or non-fatal cardiac arrest rate was seen in patients treated with encainide or flecainide (56/730) compared with that seen in patients assigned to matched placebo-treated groups (22/725). The average duration of treatment with encainide or flecainide in this study was ten months.

Cordarone therapy was evaluated in two multi-centered, randomized, double-blind, placebo-controlled trials involving 1202 (Canadian Amiodarone Myocardial Infarction Arrhythmia Trial; CAMIAT) and 1486 (European Myocardial Infarction Amiodarone Trial; EMIAT) post-MI patients followed for up to 2 years. Patients in CAMIAT qualified with ventricular arrhythmias, and those randomized to amiodarone received weight- and response-adjusted doses of 200 to 400 mg/day. Patients in EMIAT qualified with ejection fraction <40%, and those randomized to amiodarone received fixed doses of 200 mg/day. Both studies had weeks-long loading dose schedules. Intent-to-treat all-cause mortality results were as follows:

Placebo Amiodarone Relative Risk
N Deaths N Deaths 95%CI
EMIAT 743 102 743 103 0.99 0.76–1.31
CAMIAT 596 68 606 57 0.88 0.58–1.16

These data are consistent with the results of a pooled analysis of smaller, controlled studies involving patients with structural heart disease (including myocardial infarction).

Pulmonary Toxicity

There have been postmarketing reports of acute-onset (days to weeks) pulmonary injury in patients treated with oral Cordarone with or without initial I.V. therapy. Findings have included pulmonary infiltrates and/or mass on X-ray, pulmonary alveolar hemorrhage, pleural effusion, bronchospasm, wheezing, fever, dyspnea, cough, hemoptysis, and hypoxia. Some cases have progressed to respiratory failure and/or death. Postmarketing reports describe cases of pulmonary toxicity in patients treated with low doses of Cordarone; however, reports suggest that the use of lower loading and maintenance doses of Cordarone are associated with a decreased incidence of Cordarone-induced pulmonary toxicity.

Cordarone Tablets may cause a clinical syndrome of cough and progressive dyspnea accompanied by functional, radiographic, gallium-scan, and pathological data consistent with pulmonary toxicity, the frequency of which varies from 2 to 7% in most published reports, but is as high as 10 to 17% in some reports. Therefore, when Cordarone therapy is initiated, a baseline chest X-ray and pulmonary-function tests, including diffusion capacity, should be performed. The patient should return for a history, physical exam, and chest X-ray every 3 to 6 months.

Pulmonary toxicity secondary to Cordarone seems to result from either indirect or direct toxicity as represented by hypersensitivity pneumonitis (including eosinophilic pneumonia) or interstitial/alveolar pneumonitis, respectively.

Patients with preexisting pulmonary disease have a poorer prognosis if pulmonary toxicity develops.

Hypersensitivity pneumonitis usually appears earlier in the course of therapy, and rechallenging these patients with Cordarone results in a more rapid recurrence of greater severity.

Bronchoalveolar lavage is the procedure of choice to confirm this diagnosis, which can be made when a T suppressor/cytotoxic (CD8-positive) lymphocytosis is noted. Steroid therapy should be instituted and Cordarone therapy discontinued in these patients.

Interstitial/alveolar pneumonitis may result from the release of oxygen radicals and/or phospholipidosis and is characterized by findings of diffuse alveolar damage, interstitial pneumonitis or fibrosis in lung biopsy specimens. Phospholipidosis (foamy cells, foamy macrophages), due to inhibition of phospholipase, will be present in most cases of Cordarone-induced pulmonary toxicity; however, these changes also are present in approximately 50% of all patients on Cordarone therapy. These cells should be used as markers of therapy, but not as evidence of toxicity. A diagnosis of Cordarone-induced interstitial/alveolar pneumonitis should lead, at a minimum, to dose reduction or, preferably, to withdrawal of the Cordarone to establish reversibility, especially if other acceptable antiarrhythmic therapies are available. Where these measures have been instituted, a reduction in symptoms of amiodarone-induced pulmonary toxicity was usually noted within the first week, and a clinical improvement was greatest in the first two to three weeks. Chest X-ray changes usually resolve within two to four months. According to some experts, steroids may prove beneficial. Prednisone in doses of 40 to 60 mg/day or equivalent doses of other steroids have been given and tapered over the course of several weeks depending upon the condition of the patient. In some cases rechallenge with Cordarone at a lower dose has not resulted in return of toxicity.

In a patient receiving Cordarone, any new respiratory symptoms should suggest the possibility of pulmonary toxicity, and the history, physical exam, chest X-ray, and pulmonary-function tests (with diffusion capacity) should be repeated and evaluated. A 15% decrease in diffusion capacity has a high sensitivity but only a moderate specificity for pulmonary toxicity; as the decrease in diffusion capacity approaches 30%, the sensitivity decreases but the specificity increases. A gallium-scan also may be performed as part of the diagnostic workup.

Fatalities, secondary to pulmonary toxicity, have occurred in approximately 10% of cases. However, in patients with life-threatening arrhythmias, discontinuation of Cordarone therapy due to suspected drug-induced pulmonary toxicity should be undertaken with caution, as the most common cause of death in these patients is sudden cardiac death. Therefore, every effort should be made to rule out other causes of respiratory impairment (i.e., congestive heart failure with Swan-Ganz catheterization if necessary, respiratory infection, pulmonary embolism, malignancy, etc.) before discontinuing Cordarone in these patients. In addition, bronchoalveolar lavage, transbronchial lung biopsy and/or open lung biopsy may be necessary to confirm the diagnosis, especially in those cases where no acceptable alternative therapy is available.

If a diagnosis of Cordarone-induced hypersensitivity pneumonitis is made, Cordarone should be discontinued, and treatment with steroids should be instituted. If a diagnosis of Cordarone-induced interstitial/alveolar pneumonitis is made, steroid therapy should be instituted and, preferably, Cordarone discontinued or, at a minimum, reduced in dosage. Some cases of Cordarone-induced interstitial/alveolar pneumonitis may resolve following a reduction in Cordarone dosage in conjunction with the administration of steroids. In some patients, rechallenge at a lower dose has not resulted in return of interstitial/alveolar pneumonitis; however, in some patients (perhaps because of severe alveolar damage) the pulmonary lesions have not been reversible.

Worsened Arrhythmia

Cordarone, like other antiarrhythmics, can cause serious exacerbation of the presenting arrhythmia and has been reported in about 2 to 5% in most series, and has included new ventricular fibrillation, incessant ventricular tachycardia, increased resistance to cardioversion, and polymorphic ventricular tachycardia associated with QTc prolongation (Torsade de Pointes [TdP]). In addition, Cordarone has caused symptomatic bradycardia or sinus arrest with suppression of escape foci in 2 to 4% of patients. The risk of exacerbation may be increased when other risk factors are present such as electrolytic disorders or use of concomitant antiarrhythmics or other interacting drugs (See "Drug Interactions").

Correct hypokalemia, hypomagnesemia or hypocalcemia whenever possible before initiating treatment with CORDARONE, as these disorders can exaggerate the degree of QTc prolongation and increase the potential for TdP. Give special attention to electrolyte and acid-base balance in patients experiencing severe or prolonged diarrhea or in patients receiving concomitant diuretics and laxatives, systemic corticosteroids, amphotericin B (IV) or other drugs affecting electrolyte levels.

The need to co-administer amiodarone with any other drug known to prolong the QTc interval must be based on a careful assessment of the potential risks and benefits of doing so for each patient.

Serious Symptomatic Bradycardia When Co-administered with Ledipasvir/Sofosbuvir or with Sofosbuvir with Simeprevir

Postmarketing cases of symptomatic bradycardia, some requiring pacemaker insertion and at least one fatal, have been reported when ledipasvir/sofosbuvir or sofosbuvir with simeprevir were initiated in patients on amiodarone. Bradycardia generally occurred within hours to days, but in some cases up to 2 weeks after initiating antiviral treatment. Bradycardia generally resolved after discontinuation of antiviral treatment. The mechanism for this effect is unknown. Monitor heart rate in patients taking or recently discontinuing amiodarone when starting antiviral treatment.

Implantable Cardiac Devices

In patients with implanted defibrillators or pacemakers, chronic administration of antiarrhythmic drugs may affect pacing or defibrillating thresholds. Therefore, at the inception of and during amiodarone treatment, pacing and defibrillation thresholds should be assessed.

Thyrotoxicosis

Cordarone-induced hyperthyroidism may result in thyrotoxicosis and/or the possibility of arrhythmia breakthrough or aggravation. There have been reports of death associated with amiodarone-induced thyrotoxicosis. IF ANY NEW SIGNS OF ARRHYTHMIA APPEAR, THE POSSIBILITY OF HYPERTHYROIDISM SHOULD BE CONSIDERED (see "PRECAUTIONS, Thyroid Abnormalities").

Liver Injury

Elevations of hepatic enzyme levels are seen frequently in patients exposed to Cordarone and in most cases are asymptomatic. If the increase exceeds three times normal, or doubles in a patient with an elevated baseline, discontinuation of Cordarone or dosage reduction should be considered. In a few cases in which biopsy has been done, the histology has resembled that of alcoholic hepatitis or cirrhosis. Hepatic failure has been a rare cause of death in patients treated with Cordarone.

Loss of Vision

Cases of optic neuropathy and/or optic neuritis, usually resulting in visual impairment, have been reported in patients treated with amiodarone. In some cases, visual impairment has progressed to permanent blindness. Optic neuropathy and/or neuritis may occur at any time following initiation of therapy. A causal relationship to the drug has not been clearly established. If symptoms of visual impairment appear, such as changes in visual acuity and decreases in peripheral vision, prompt ophthalmic examination is recommended. Appearance of optic neuropathy and/or neuritis calls for re-evaluation of Cordarone therapy. The risks and complications of antiarrhythmic therapy with Cordarone must be weighed against its benefits in patients whose lives are threatened by cardiac arrhythmias. Regular ophthalmic examination, including funduscopy and slit-lamp examination, is recommended during administration of Cordarone. (See "ADVERSE REACTIONS").

Neonatal Injury

Amiodarone can cause fetal harm when administered to a pregnant woman. Fetal exposure may increase the potential for adverse experiences including cardiac, thyroid, neurodevelopmental, neurological and growth effects in neonate. Inform the patient of the potential hazard to the fetus if Cordarone is administered during pregnancy or if the patient becomes pregnant while taking Cordarone.

In pregnant rats and rabbits, amiodarone HCl in doses of 25 mg/kg/day (approximately 0.4 and 0.9 times, respectively, the maximum recommended human maintenance dose1) had no adverse effects on the fetus. In the rabbit, 75 mg/kg/day (approximately 2.7 times the maximum recommended human maintenance dose1) caused abortions in greater than 90% of the animals. In the rat, doses of 50 mg/kg/day or more were associated with slight displacement of the testes and an increased incidence of incomplete ossification of some skull and digital bones; at 100 mg/kg/day or more, fetal body weights were reduced; at 200 mg/kg/day, there was an increased incidence of fetal resorption. (These doses in the rat are approximately 0.8, 1.6 and 3.2 times the maximum recommended human maintenance dose.1) Adverse effects on fetal growth and survival also were noted in one of two strains of mice at a dose of 5 mg/kg/day (approximately 0.04 times the maximum recommended human maintenance dose1).


1
600 mg in a 50 kg patient (doses compared on a body surface area basis)

PRECAUTIONS

Impairment of Vision

Optic Neuropathy and/or Neuritis

Cases of optic neuropathy and optic neuritis have been reported (see "WARNINGS").

Corneal Microdeposits

Corneal microdeposits appear in the majority of adults treated with Cordarone. They are usually discernible only by slit-lamp examination, but give rise to symptoms such as visual halos or blurred vision in as many as 10% of patients. Corneal microdeposits are reversible upon reduction of dose or termination of treatment. Asymptomatic microdeposits alone are not a reason to reduce dose or discontinue treatment (see "ADVERSE REACTIONS").

Neurologic

Chronic administration of oral amiodarone in rare instances may lead to the development of peripheral neuropathy that may resolve when amiodarone is discontinued, but this resolution has been slow and incomplete.

Photosensitivity

Cordarone has induced photosensitization in about 10% of patients; some protection may be afforded by the use of sun-barrier creams or protective clothing. During long-term treatment, a blue-gray discoloration of the exposed skin may occur. The risk may be increased in patients of fair complexion or those with excessive sun exposure, and may be related to cumulative dose and duration of therapy.

Thyroid Abnormalities

Cordarone inhibits peripheral conversion of thyroxine (T4) to triiodothyronine (T3) and may cause increased thyroxine levels, decreased T3 levels, and increased levels of inactive reverse T3 (rT3) in clinically euthyroid patients. It is also a potential source of large amounts of inorganic iodine. Because of its release of inorganic iodine, or perhaps for other reasons, Cordarone can cause either hypothyroidism or hyperthyroidism. Thyroid function should be monitored prior to treatment and periodically thereafter, particularly in elderly patients, and in any patient with a history of thyroid nodules, goiter, or other thyroid dysfunction. Because of the slow elimination of Cordarone and its metabolites, high plasma iodide levels, altered thyroid function, and abnormal thyroid-function tests may persist for several weeks or even months following Cordarone withdrawal.

Hypothyroidism has been reported in 2 to 10% of patients receiving amiodarone and may be primary or subsequent to resolution of preceding amiodarone-induced hyperthyroidism. This condition may be identified by clinical symptoms and elevated serum TSH levels. Cases of severe hypothyroidism and myxedema coma, sometimes fatal, have been reported in association with amiodarone therapy. In some clinically hypothyroid amiodarone-treated patients, free thyroxine index values may be normal. Manage hypothyroidism by reducing the dose of or discontinuing Cordarone and considering the need for thyroid hormone supplement.

Hyperthyroidism occurs in about 2% of patients receiving Cordarone, but the incidence may be higher among patients with prior inadequate dietary iodine intake. Cordarone-induced hyperthyroidism usually poses a greater hazard to the patient than hypothyroidism because of the possibility of thyrotoxicosis and/or arrhythmia breakthrough or aggravation, all of which may result in death. There have been reports of death associated with amiodarone-induced thyrotoxicosis. IF ANY NEW SIGNS OF ARRHYTHMIA APPEAR, THE POSSIBILITY OF HYPERTHYROIDISM SHOULD BE CONSIDERED.

Hyperthyroidism is best identified by relevant clinical symptoms and signs, accompanied usually by abnormally elevated levels of serum T3 RIA, and further elevations of serum T4, and a subnormal serum TSH level (using a sufficiently sensitive TSH assay). The finding of a flat TSH response to TRH is confirmatory of hyperthyroidism and may be sought in equivocal cases. Since arrhythmia breakthroughs may accompany Cordarone-induced hyperthyroidism, aggressive medical treatment is indicated, including, if possible, dose reduction or withdrawal of Cordarone.

The institution of antithyroid drugs, β-adrenergic blockers and/or temporary corticosteroid therapy may be necessary. The action of antithyroid drugs may be especially delayed in amiodarone-induced thyrotoxicosis because of substantial quantities of preformed thyroid hormones stored in the gland. Radioactive iodine therapy is contraindicated because of the low radioiodine uptake associated with amiodarone-induced hyperthyroidism. Cordarone-induced hyperthyroidism may be followed by a transient period of hypothyroidism (see "WARNINGS, Thyrotoxicosis").

When aggressive treatment of amiodarone-induced thyrotoxicosis has failed or amiodarone cannot be discontinued because it is the only drug effective against the resistant arrhythmia, surgical management may be an option. Experience with thyroidectomy as a treatment for amiodarone-induced thyrotoxicosis is limited, and this form of therapy could induce thyroid storm. Therefore, surgical and anesthetic management require careful planning.

There have been postmarketing reports of thyroid nodules/thyroid cancer in patients treated with Cordarone. In some instances hyperthyroidism was also present (see "WARNINGS" and "ADVERSE REACTIONS").

Surgery

Volatile Anesthetic Agents

Close perioperative monitoring is recommended in patients undergoing general anesthesia who are on amiodarone therapy as they may be more sensitive to the myocardial depressant and conduction effects of halogenated inhalational anesthetics.

Hypotension Postbypass

Rare occurrences of hypotension upon discontinuation of cardiopulmonary bypass during open-heart surgery in patients receiving Cordarone have been reported. The relationship of this event to Cordarone therapy is unknown.

Adult Respiratory Distress Syndrome (ARDS)

Postoperatively, occurrences of ARDS have been reported in patients receiving Cordarone therapy who have undergone either cardiac or noncardiac surgery. Although patients usually respond well to vigorous respiratory therapy, in rare instances the outcome has been fatal. Until further studies have been performed, it is recommended that FiO2 and the determinants of oxygen delivery to the tissues (e.g., SaO2, PaO2) be closely monitored in patients on Cordarone.

Corneal Refractive Laser Surgery

Patients should be advised that most manufacturers of corneal refractive laser surgery devices contraindicate that procedure in patients taking Cordarone.

Information for Patients

Patients should be instructed to read the accompanying Medication Guide each time they refill their prescription. The complete text of the Medication Guide is reprinted at the end of this document.

Laboratory Tests

Elevations in liver enzymes (aspartate aminotransferase and alanine aminotransferase) can occur. Liver enzymes in patients on relatively high maintenance doses should be monitored on a regular basis. Persistent significant elevations in the liver enzymes or hepatomegaly should alert the physician to consider reducing the maintenance dose of Cordarone or discontinuing therapy.

Cordarone alters the results of thyroid-function tests, causing an increase in serum T4 and serum reverse T3, and a decline in serum T3 levels. Despite these biochemical changes, most patients remain clinically euthyroid.

Drug Interactions

In view of the long and variable half-life of amiodarone, potential for drug interactions exists, not only with concomitant medication, but also with drugs administered after discontinuation of amiodarone.

Pharmacodynamic interactions

Drugs inducing TdP or prolonging QT

Co-administration of amiodarone with drugs known to prolong the QT interval (such as class I and III antiarrhythmics, lithium, certain phenothiazines, tricyclic antidepressants, certain fluoroquinolone and macrolide antibiotics, IV pentamidine, and azole antifungals) increases the risk of Torsades de Points. Avoid concomitant use of drugs that prolong the QT interval.

Drugs lowering heart rate or causing automaticity or conduction disorders

Concomitant use of drugs with depressant effects on the sinus and AV node (e.g., digoxin, beta blockers, verapamil, diltiazem, ivabradine, clonidine) can potentiate the electrophysiologic and hemodynamic effects of amiodarone, resulting in bradycardia, sinus arrest, and AV block. Monitor heart rate in patients on amiodarone and concomitant drugs that slow heart rate.

Pharmacokinetic interactions

Effects of other medicinal products on amiodarone

Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit CYP3A (e.g., certain protease inhibitors, loratadine, cimetidine, trazodone) may decrease the metabolism and increase serum concentrations of amiodarone. Concomitant use of CYP3A inducers (rifampin, St. John's Wort), may lead to decreased serum concentrations and loss of efficacy. Consider serial measurement of amiodarone serum concentration during concomitant use of drugs affecting CYP3A activity.

Grapefruit juice given to healthy volunteers increased amiodarone AUC by 50% and Cmax by 84%, and decreased DEA to unquantifiable concentrations. Grapefruit juice inhibits CYP3A-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in increased plasma levels of amiodarone; therefore, grapefruit juice should not be taken during treatment with oral amiodarone. This information should be considered when transitioning from intravenous to oral amiodarone. Cholestyramine reduces enterohepatic circulation of amiodarone thereby increasing its elimination. This results in reduced amiodarone serum levels and half-life.

Effects of amiodarone on other medicinal products

Amiodarone inhibits P-glycoprotein and certain CYP450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A. This inhibition can result in unexpectedly high plasma levels of other drugs which are metabolized by those CYP450 enzymes or are substrates of P-glycoprotein. Reported examples of this interaction include the following:

Cyclosporine (CYP3A substrate) administered in combination with oral amiodarone has been reported to produce persistently elevated plasma concentrations of cyclosporine resulting in elevated creatinine, despite reduction in dose of cyclosporine. Monitor cyclosporine drug levels and renal function in patients taking both drugs.

HMG-CoA reductase inhibitors

The use of HMG-CoA reductase inhibitors that are CYP3A substrates in combination with amiodarone has been associated with reports of myopathy/rhabdomyolysis. Limit the dose of simvastatin in patients on amiodarone to 20 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A substrates (e.g., atorvastatin) may be required as amiodarone may increase the plasma concentration of these drugs.

Digoxin

In patients receiving digoxin therapy, administration of oral amiodarone results in an increase in the serum digoxin concentration. Amiodarone taken concomitantly with digoxin increases the serum digoxin concentration by 70% after one day. On initiation of oral amiodarone, the need for digitalis therapy should be reviewed and the dose reduced by approximately 50% or discontinued. If digitalis treatment is continued, serum levels should be closely monitored and patients observed for clinical evidence of toxicity.

Antiarrhythmics

The metabolism of quinidine, procainamide, flecainide can be inhibited by amiodarone. Amiodarone taken concomitantly with quinidine increases quinidine serum concentration by 33% after two days. Amiodarone taken concomitantly with procainamide for less than seven days increases plasma concentrations of procainamide and n-acetyl procainamide by 55% and 33%, respectively. In general, any added antiarrhythmic drug should be initiated at a lower than usual dose with careful monitoring.

Combination of amiodarone with other antiarrhythmic therapy should be reserved for patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent or incompletely responsive to amiodarone. During transition to amiodarone the dose levels of previously administered agents should be reduced by 30 to 50% several days after the addition of amiodarone, when arrhythmia suppression should be beginning. The continued need for the other antiarrhythmic agent should be reviewed after the effects of amiodarone have been established, and discontinuation ordinarily should be attempted. If the treatment is continued, these patients should be particularly carefully monitored for adverse effects, especially conduction disturbances and exacerbation of tachyarrhythmias, as amiodarone is continued. In amiodarone-treated patients who require additional antiarrhythmic therapy, the initial dose of such agents should be approximately half of the usual recommended dose.

Metabolism of lidocaine (CYP3A substrate) can be inhibited by amiodarone resulting in increased lidocaine concentrations. Sinus bradycardia and seizure has been reported in patients receiving concomitant lidocaine and amiodarone.

Anticoagulants

Potentiation of warfarin-type (CYP2C9 and CYP3A substrate) anticoagulant response is almost always seen in patients receiving amiodarone and can result in serious or fatal bleeding. Since the concomitant administration of warfarin with amiodarone increases the prothrombin time by 100% after 3 to 4 days, the dose of the anticoagulant should be reduced by one-third to one-half, and prothrombin times should be monitored closely.

A potential interaction between clopidogrel and amiodarone resulting in ineffective inhibition of platelet aggregation has been reported.

Dabigatran etexilate when taken concomitantly with amiodarone may result in elevated serum concentration of dabigatran.

Fentanyl (CYP3A substrate) in combination with amiodarone may cause hypotension, bradycardia, and decreased cardiac output.

Increased steady-state levels of phenytoin during concomitant therapy with amiodarone have been reported. Monitor phenytoin levels in patients taking both drugs.

Dextromethorphan is a substrate for both CYP2D6 and CYP3A. Amiodarone inhibits CYP2D6 and CYP3A. Chronic (>2 weeks) amiodarone treatment impairs metabolism of dextromethorphan leading to increased serum concentration.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Amiodarone HCl was associated with a statistically significant, dose-related increase in the incidence of thyroid tumors (follicular adenoma and/or carcinoma) in rats. The incidence of thyroid tumors was greater than control even at the lowest dose level tested, i.e., 5 mg/kg/day (approximately 0.08 times the maximum recommended human maintenance dose2).

Mutagenicity studies (Ames, micronucleus, and lysogenic tests) with Cordarone were negative.

In a study in which amiodarone HCl was administered to male and female rats, beginning 9 weeks prior to mating, reduced fertility was observed at a dose level of 90 mg/kg/day (approximately 1.4 times the maximum recommended human maintenance dose2).


2
600 mg in a 50 kg patient (dose compared on a body surface area basis)

Pregnancy

See "WARNINGS, Neonatal Injury".

Teratogenic Effects

Amiodarone and desethylamiodarone cross the placenta.

Reported risks include:

  • neonatal bradycardia, QT prolongation, and periodic ventricular extrasystoles
  • neonatal hypothyroidism (with or without goiter) detected antenatally or in the newborn and reported even after a few days of exposure
  • neonatal hyperthyroxinemia
  • neurodevelopmental abnormalities independent of thyroid function, including speech delay and difficulties with written language and arithmetic, delayed motor development, and ataxia.
  • jerk nystagmus with synchronous head titubation
  • fetal growth retardation
  • premature birth

Labor and Delivery

It is not known whether the use of Cordarone during labor or delivery has any immediate or delayed adverse effects. Preclinical studies in rodents have not shown any effect of Cordarone on the duration of gestation or on parturition.

Nursing Mothers

Amiodarone and one of its major metabolites, DEA, are excreted in human milk, suggesting that breast-feeding could expose the nursing infant to a significant dose of the drug. Nursing offspring of lactating rats administered amiodarone have been shown to be less viable and have reduced body-weight gains. The risk of exposing the infant to amiodarone and DEA must be weighed against the potential benefit of arrhythmia suppression in the mother. Advise the mother to discontinue nursing.

Pediatric Use

The safety and effectiveness of Cordarone Tablets in pediatric patients have not been established.

Geriatric Use

Clinical studies of Cordarone Tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

ADVERSE REACTIONS

Adverse reactions have been very common in virtually all series of patients treated with Cordarone for ventricular arrhythmias with relatively large doses of drug (400 mg/day and above), occurring in about three-fourths of all patients and causing discontinuation in 7 to 18%. The most serious reactions are pulmonary toxicity, exacerbation of arrhythmia, and rare serious liver injury (see "WARNINGS"), but other adverse effects constitute important problems. They are often reversible with dose reduction or cessation of Cordarone treatment. Most of the adverse effects appear to become more frequent with continued treatment beyond six months, although rates appear to remain relatively constant beyond one year. The time and dose relationships of adverse effects are under continued study.

Neurologic problems are extremely common, occurring in 20 to 40% of patients and including malaise and fatigue, tremor and involuntary movements, poor coordination and gait, and peripheral neuropathy; they are rarely a reason to stop therapy and may respond to dose reductions or discontinuation (see "PRECAUTIONS"). There have been spontaneous reports of demyelinating polyneuropathy.

Gastrointestinal complaints, most commonly nausea, vomiting, constipation, and anorexia, occur in about 25% of patients but rarely require discontinuation of drug. These commonly occur during high-dose administration (i.e., loading dose) and usually respond to dose reduction or divided doses.

Ophthalmic abnormalities including optic neuropathy and/or optic neuritis, in some cases progressing to permanent blindness, papilledema, corneal degeneration, photosensitivity, eye discomfort, scotoma, lens opacities, and macular degeneration have been reported. (See "WARNINGS".)

Asymptomatic corneal microdeposits are present in virtually all adult patients who have been on drug for more than 6 months. Some patients develop eye symptoms of halos, photophobia, and dry eyes. Vision is rarely affected and drug discontinuation is rarely needed.

Dermatological adverse reactions occur in about 15% of patients, with photosensitivity being most common (about 10%). Sunscreen and protection from sun exposure may be helpful, and drug discontinuation is not usually necessary. Prolonged exposure to Cordarone occasionally results in a blue-gray pigmentation. This is slowly and occasionally incompletely reversible on discontinuation of drug but is of cosmetic importance only.

Cardiovascular adverse reactions, other than exacerbation of the arrhythmias, include the uncommon occurrence of congestive heart failure (3%) and bradycardia. Bradycardia usually responds to dosage reduction but may require a pacemaker for control. CHF rarely requires drug discontinuation. Cardiac conduction abnormalities occur infrequently and are reversible on discontinuation of drug.

The following side-effect rates are based on a retrospective study of 241 patients treated for 2 to 1,515 days (mean 441.3 days).

The following side effects were each reported in 10 to 33% of patients

Gastrointestinal: Nausea and vomiting.

The following side effects were each reported in 4 to 9% of patients

Dermatologic: Solar dermatitis/photosensitivity.

Neurologic: Malaise and fatigue, tremor/abnormal involuntary movements, lack of coordination, abnormal gait/ataxia, dizziness, paresthesias.

Gastrointestinal: Constipation, anorexia.

Ophthalmologic: Visual disturbances.

Hepatic: Abnormal liver-function tests.

Respiratory: Pulmonary inflammation or fibrosis.

The following side effects were each reported in 1 to 3% of patients

Thyroid: Hypothyroidism, hyperthyroidism.

Neurologic: Decreased libido, insomnia, headache, sleep disturbances.

Cardiovascular: Congestive heart failure, cardiac arrhythmias, SA node dysfunction.

Gastrointestinal: Abdominal pain.

Hepatic: Nonspecific hepatic disorders.

Other: Flushing, abnormal taste and smell, edema, abnormal salivation, coagulation abnormalities.

The following side effects were each reported in less than 1% of patients

Blue skin discoloration, rash, spontaneous ecchymosis, alopecia, hypotension, and cardiac conduction abnormalities.

In surveys of almost 5,000 patients treated in open U.S. studies and in published reports of treatment with Cordarone, the adverse reactions most frequently requiring discontinuation of Cordarone included pulmonary infiltrates or fibrosis, paroxysmal ventricular tachycardia, congestive heart failure, and elevation of liver enzymes. Other symptoms causing discontinuations less often included visual disturbances, solar dermatitis, blue skin discoloration, hyperthyroidism, and hypothyroidism.

Postmarketing Reports

In postmarketing surveillance, serious symptomatic bradycardia has been reported in patients taking amiodarone who initiate treatment with ledipasvir/sofosbuvir or with sofosbuvir with simeprevir, hypotension (sometimes fatal), sinus arrest, anaphylactic/anaphylactoid reaction (including shock), angioedema, urticaria, eosinophilic pneumonia, hepatitis, cholestatic hepatitis, cirrhosis, pancreatitis, acute pancreatitis, renal impairment, renal insufficiency, acute renal failure, acute respiratory distress syndrome in the post-operative setting, bronchospasm, possibly fatal respiratory disorders (including distress, failure, arrest, and ARDS), bronchiolitis obliterans organizing pneumonia (possibly fatal), fever, dyspnea, cough, hemoptysis, wheezing, hypoxia, pulmonary infiltrates and/or mass, pulmonary alveolar hemorrhage, pleural effusion, pleuritis, pseudotumor cerebri, parkinsonian symptoms such as akinesia and bradykinesia (sometimes reversible with discontinuation of therapy), syndrome of inappropriate antidiuretic hormone secretion (SIADH), thyroid nodules/thyroid cancer, toxic epidermal necrolysis (sometimes fatal), erythema multiforme, Stevens-Johnson syndrome, exfoliative dermatitis, bullous dermatitis, drug rash with eosinophilia and systemic symptoms (DRESS), eczema, skin cancer, vasculitis, pruritus, hemolytic anemia, aplastic anemia, pancytopenia, neutropenia, thrombocytopenia, agranulocytosis, granuloma, myopathy, muscle weakness, rhabdomyolysis, demyelinating polyneuropathy, hallucination, confusional state, disorientation, delirium, epididymitis, impotence, dry mouth, and lupus-like syndrome, also have been reported with amiodarone therapy.

INDICATIONS AND USAGE

Because of its life-threatening side effects and the substantial management difficulties associated with its use (see "WARNINGS" below), Cordarone is indicated only for the treatment of the following documented, life-threatening recurrent ventricular arrhythmias when these have not responded to documented adequate doses of other available antiarrhythmics or when alternative agents could not be tolerated.

  1. Recurrent ventricular fibrillation.
  2. Recurrent hemodynamically unstable ventricular tachycardia.

As is the case for other antiarrhythmic agents, there is no evidence from controlled trials that the use of Cordarone Tablets favorably affects survival.

Cordarone should be used only by physicians familiar with and with access to (directly or through referral) the use of all available modalities for treating recurrent life-threatening ventricular arrhythmias, and who have access to appropriate monitoring facilities, including in-hospital and ambulatory continuous electrocardiographic monitoring and electrophysiologic techniques. Because of the life-threatening nature of the arrhythmias treated, potential interactions with prior therapy, and potential exacerbation of the arrhythmia, initiation of therapy with Cordarone should be carried out in the hospital.

CORVERT® (ibutilide fumarate)

These highlights do not include all the information needed to use CORVERT safety and effectively. See full prescribing information for CORVERT.

LIFE-THREATENING ARRHYTHMIAS—APPROPRIATE TREATMENT ENVIRONMENT

CORVERT can cause potentially fatal arrhythmias, particularly sustained polymorphic ventricular tachycardia, usually in association with QT prolongation (torsades de pointes), but sometimes without documented QT prolongation. In registration studies, these arrhythmias, which require cardioversion, occurred in 1.7% of treated patients during, or within a number of hours of, use of CORVERT. These arrhythmias can be reversed if treated promptly (see WARNINGS, Proarrhythmia). It is essential that CORVERT be administered in a setting of continuous ECG monitoring and by personnel trained in identification and treatment of acute ventricular arrhythmias, particularly polymorphic ventricular tachycardia. Patients with atrial fibrillation of more than 2 to 3 days' duration must be adequately anticoagulated, generally for at least 2 weeks.

CHOICE OF PATIENTS

Patients with chronic atrial fibrillation have a strong tendency to revert after conversion to sinus rhythm (see CLINICAL STUDIES) and treatments to maintain sinus rhythm carry risks. Patients to be treated with CORVERT, therefore, should be carefully selected such that the expected benefits of maintaining sinus rhythm outweigh the immediate risks of CORVERT, and the risks of maintenance therapy, and are likely to offer an advantage compared with alternative management.

CONTRAINDICATIONS

CORVERT Injection is contraindicated in patients who have previously demonstrated hypersensitivity to ibutilide fumarate or any of the other product components.

WARNINGS

Proarrhythmia

Like other antiarrhythmic agents, CORVERT Injection can induce or worsen ventricular arrhythmias in some patients. This may have potentially fatal consequences. Torsades de pointes, a polymorphic ventricular tachycardia that develops in the setting of a prolonged QT interval, may occur because of the effect CORVERT has on cardiac repolarization, but CORVERT can also cause polymorphic VT in the absence of excessive prolongation of the QT interval. In general, with drugs that prolong the QT interval, the risk of torsades de pointes is thought to increase progressively as the QT interval is prolonged and may be worsened with bradycardia, a varying heart rate, and hypokalemia. In clinical trials conducted in patients with atrial fibrillation and atrial flutter, those with QTc intervals >440 msec were not usually allowed to participate, and serum potassium had to be above 4.0 mEq/L. Although change in QTc was dose dependent for ibutilide, there was no clear relationship between risk of serious proarrhythmia and dose in clinical studies, possibly due to the small number of events. In clinical trials of intravenous ibutilide, patients with a history of congestive heart failure (CHF) or low left ventricular ejection fraction appeared to have a higher incidence of sustained polymorphic ventricular tachycardia (VT), than those without such underlying conditions; for sustained polymorphic VT the rate was 5.4% in patients with a history of CHF and 0.8% without it. There was also a suggestion that women had a higher risk of proarrhythmia, but the sex difference was not observed in all studies and was most prominent for nonsustained ventricular tachycardia. The incidence of sustained ventricular arrhythmias was similar in male (1.8%) and female (1.5%) patients, possibly due to the small number of events. CORVERT is not recommended in patients who have previously demonstrated polymorphic ventricular tachycardia (eg, torsades de pointes).

During registration trials, 1.7% of patients with atrial flutter or atrial fibrillation treated with CORVERT developed sustained polymorphic ventricular tachycardia requiring cardioversion. In these clinical trials, many initial episodes of polymorphic ventricular tachycardia occurred after the infusion of CORVERT was stopped but generally not more than 40 minutes after the start of the first infusion. There were, however, instances of recurrent polymorphic VT that occurred about 3 hours after the initial infusion. In two cases, the VT degenerated into ventricular fibrillation, requiring immediate defibrillation. Other cases were managed with cardiac pacing and magnesium sulfate infusions. Nonsustained polymorphic ventricular tachycardia occurred in 2.7% of patients and nonsustained monomorphic ventricular tachycardias occurred in 4.9% of the patients (see ADVERSE REACTIONS).

Proarrhythmic events must be anticipated. Skilled personnel and proper equipment, including cardiac monitoring equipment, intracardiac pacing facilities, a cardioverter/defibrillator, and medication for treatment of sustained ventricular tachycardia, including polymorphic ventricular tachycardia, must be available during and after administration of CORVERT. Before treatment with CORVERT, hypokalemia and hypomagnesemia should be corrected to reduce the potential for proarrhythmia. Patients should be observed with continuous ECG monitoring for at least 4 hours following infusion or until QTc has returned to baseline. Longer monitoring is required if any arrhythmic activity is noted. Management of polymorphic ventricular tachycardia includes discontinuation of ibutilide, correction of electrolyte abnormalities, especially potassium and magnesium, and overdrive cardiac pacing, electrical cardioversion, or defibrillation. Pharmacologic therapies include magnesium sulfate infusions. Treatment with antiarrhythmics should generally be avoided.


PRECAUTIONS

General

Antiarrhythmics

Class Ia antiarrhythmic drugs (Vaughan Williams Classification), such as disopyramide, quinidine, and procainamide, and other class III drugs, such as amiodarone and sotalol, should not be given concomitantly with CORVERT Injection or within 4 hours postinfusion because of their potential to prolong refractoriness. In the clinical trials, class I or other class III antiarrhythmic agents were withheld for at least 5 half-lives prior to ibutilide infusion and for 4 hours after dosing, but thereafter were allowed at the physician's discretion.

Other drugs that prolong the QT interval

The potential for proarrhythmia may increase with the administration of CORVERT Injection to patients who are being treated with drugs that prolong the QT interval, such as phenothiazines, tricyclic antidepressants, tetracyclic antidepressants, and certain antihistamine drugs (H1 receptor antagonists).

Heart block

Of the nine (1.5%) ibutilide-treated patients with reports of reversible heart block, five had first degree, three had second degree, and one had complete heart block.

Laboratory Test Interactions

None known.

Drug Interactions

No specific pharmacokinetic or other formal drug interaction studies were conducted.

Digoxin

Supraventricular arrhythmias may mask the cardiotoxicity associated with excessive digoxin levels. Therefore, it is advisable to be particularly cautious in patients whose plasma digoxin levels are above or suspected to be above the usual therapeutic range. Coadministration of digoxin did not have effects on either the safety or efficacy of ibutilide in the clinical trials.

Calcium channel blocking agents

Coadministration of calcium channel blockers did not have any effect on either the safety or efficacy of ibutilide in the clinical trials.

Beta-adrenergic blocking agents

Coadministration of beta-adrenergic blocking agents did not have any effect on either the safety or efficacy of ibutilide in the clinical trials.

Carcinogenesis, Mutagenesis, Impairment of Fertility

No animal studies have been conducted to determine the carcinogenic potential of CORVERT; however, it was not genotoxic in a battery of assays, (Ames assay, mammalian cell forward gene mutation assay, unscheduled DNA synthesis assay, and mouse micronucleus assay). Similarly, no drug-related effects on fertility or mating were noted in a reproductive study in rats in which ibutilide was administered orally to both sexes up to doses of 20 mg/kg/day. On a mg/m2 basis, corrected for 3% bioavailability, the highest dose tested was approximately four times the maximum recommended human dose (MRHD).

Pregnancy

Ibutilide administered orally was teratogenic (abnormalities included adactyly, interventricular septal defects, and scoliosis) and embryocidal in reproduction studies in rats. On a mg/m2 basis, corrected for the 3% oral bioavailability, the "no adverse effect dose" (5 mg/kg/day given orally) was approximately the same as the maximum recommended human dose (MRHD); the teratogenic dose (20 mg/kg/day given orally) was about four times the MRHD on a mg/m2 basis, or 16 times the MRHD on a mg/kg basis. CORVERT should not be administered to a pregnant woman unless clinical benefit outweighs potential risk to the fetus.

Nursing Mothers

The excretion of ibutilide into breast milk has not been studied; accordingly, breastfeeding should be discouraged during therapy with CORVERT.

Pediatric Use

Clinical trials with CORVERT in patients with atrial fibrillation and atrial flutter did not include anyone under the age of 18. Safety and effectiveness of ibutilide in pediatric patients has not been established.

Geriatric Use

Clinical studies of ibutilide fumarate (involving 586 patients) did not include sufficient numbers of subjects less than age 65 (45%) to determine whether they respond differently from older subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Use in Patients With Hepatic or Renal Dysfunction

The safety, effectiveness, and pharmacokinetics of CORVERT have not been established in patients with hepatic or renal dysfunction. However, it is unlikely that dosing adjustments would be necessary in patients with compromised renal or hepatic function based on the following considerations: (1) CORVERT is indicated for rapid intravenous therapy (duration ≤ 30 minutes) and is dosed to a known, well-defined pharmacologic action (termination of arrhythmia) or to a maximum of two 10-minute infusions; (2) less than 10% of the dose of CORVERT is excreted unchanged in the urine; and (3) drug distribution appears to be one of the primary mechanisms responsible for termination of the pharmacologic effect. Nonetheless, patients with abnormal liver function should be monitored by telemetry for more than the 4-hour period generally recommended.

In 285 patients with atrial fibrillation or atrial flutter who were treated with CORVERT, the clearance of ibutilide was independent of renal function, as assessed by creatinine clearance (range 21 to 140 mL/min).

ADVERSE REACTIONS

CORVERT Injection was generally well tolerated in clinical trials. Of the 586 patients with atrial fibrillation or atrial flutter who received CORVERT in phase II/III studies, 149 (25%) reported medical events related to the cardiovascular system, including sustained polymorphic ventricular tachycardia (1.7%) and nonsustained polymorphic ventricular tachycardia (2.7%).

Other clinically important adverse events with an uncertain relationship to CORVERT include the following (0.2% represents one patient): sustained monomorphic ventricular tachycardia (0.2%), nonsustained monomorphic ventricular tachycardia (4.9%), AV block (1.5%), bundle branch block (1.9%), ventricular extrasystoles (5.1%), supraventricular extrasystoles (0.9%), hypotension/postural hypotension (2.0%), bradycardia/sinus bradycardia (1.2%), nodal arrhythmia (0.7%), congestive heart failure (0.5%), tachycardia/sinus tachycardia/supraventricular tachycardia (2.7%), idioventricular rhythm (0.2%), syncope (0.3%), and renal failure (0.3%). The incidence of these events, except for syncope, was greater in the group treated with CORVERT than in the placebo group.

Another adverse reaction that may be associated with the administration of CORVERT was nausea, which occurred with a frequency greater than 1% more in ibutilide-treated patients than those treated with placebo.

The medical events reported for more than 1% of the placebo- and ibutilide-treated patients are shown in the following Table.

Treatment-Emergent Medical Events With Frequency of More Than 1% and Higher Than That of Placebo
Event Placebo
N=127
All Ibutilide
N=586
Patients Patients
n % n %
CARDIOVASCULAR
  Ventricular extrasystoles 1 0.8 30 5.1
  Nonsustained monomorphic VT 1 0.8 29 4.9
  Nonsustained polymorphic VT 16 2.7
  Hypotension 2 1.6 12 2.0
  Bundle branch block 11 1.9
  Sustained polymorphic VT 10 1.7
  AV block 1 0.8 9 1.5
  Hypertension 7 1.2
  QT segment prolonged 7 1.2
  Bradycardia 1 0.8 7 1.2
  Palpitation 1 0.8 6 1.0
  Tachycardia 1 0.8 16 2.7
GASTROINTESTINAL
  Nausea 1 0.8 11 1.9
CENTRAL NERVOUS SYSTEM
  Headache 4 3.1 21 3.6

In the post-cardiac surgery study (see CLINICAL STUDIES), similar types of medical events were reported. In the 1 mg ibutilide fumarate treatment group (N=70), 2 patients (2.9%) developed sustained polymorphic ventricular tachycardia and 2 other patients (2.9%) developed nonsustained polymorphic ventricular tachycardia. Polymorphic ventricular tachycardia was not reported in the 73 patients in the 0.5 mg dose group or in the 75 patients in the 0.25 mg dose group.

INDICATIONS AND USAGE

CORVERT Injection is indicated for the rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm. Patients with atrial arrhythmias of longer duration are less likely to respond to CORVERT. The effectiveness of ibutilide has not been determined in patients with arrhythmias of more than 90 days in duration.

CORZIDE® (nadolol, bendroflumethiazide)

These highlights do not include all the information needed to use CORZIDE safety and effectively. See full prescribing information for CORZIDE.

CONTRAINDICATIONS

Nadolol

Nadolol is contraindicated in bronchial asthma, sinus bradycardia and greater than first degree conduction block, cardiogenic shock, and overt cardiac failure (see WARNINGS).

Bendroflumethiazide

Bendroflumethiazide is contraindicated in anuria. It is also contraindicated in patients who have previously demonstrated hypersensitivity to bendroflumethiazide or other sulfonamide-derived drugs.

WARNINGS

Nadolol

Cardiac Failure—Sympathetic stimulation may be a vital component supporting circulatory function in patients with congestive heart failure, and its inhibition by beta-blockade may precipitate more severe failure. Although beta-blockers should be avoided in overt congestive heart failure, if necessary, they can be used with caution in patients with a history of failure who are well compensated, usually with digitalis and diuretics. Beta-adrenergic blocking agents do not abolish the inotropic action of digitalis on heart muscle.

IN PATIENTS WITHOUT A HISTORY OF HEART FAILURE, continued use of beta-blockers can, in some cases, lead to cardiac failure. Therefore, at the first sign or symptom of heart failure, the patient should be digitalized and/or treated with diuretics, and the response observed closely, or nadolol should be discontinued (gradually, if possible).

Exacerbation of Ischemic Heart Disease Following Abrupt Withdrawal—Hypersensitivity to catecholamines has been observed in patients withdrawn from beta-blocker therapy; exacerbation of angina and, in some cases, myocardial infarction have occurred after abrupt discontinuation of such therapy. When discontinuing chronically administered nadolol, particularly in patients with ischemic heart disease, the dosage should be gradually reduced over a period of one to two weeks and the patient should be carefully monitored. If angina markedly worsens or acute coronary insufficiency develops, nadolol administration should be reinstituted promptly, at least temporarily, and other measures appropriate for the management of unstable angina should be taken. Patients should be warned against interruption or discontinuation of therapy without the physician's advice. Because coronary artery disease is common and may be unrecognized, it may be prudent not to discontinue nadolol therapy abruptly even in patients treated only for hypertension.

Nonallergic Bronchospasm (e.g., chronic bronchitis, emphysema)— PATIENTS WITH BRONCHOSPASTIC DISEASES SHOULD IN GENERAL NOT RECEIVE BETA-BLOCKERS. Nadolol should be administered with caution since it may block bronchodilation produced by endogenous or exogenous catecholamine stimulation of beta2 receptors.

Major Surgery—Chronically administered beta-blocking therapy should not be routinely withdrawn prior to major surgery; however, the impaired ability of the heart to respond to reflex adrenergic stimuli may augment the risks of general anesthesia and surgical procedures.

Diabetes and Hypoglycemia—Beta-adrenergic blockade may prevent the appearance of premonitory signs and symptoms (e.g., tachycardia and blood pressure changes) of acute hypoglycemia. This is especially important with labile diabetics. Beta-blockade also reduces the release of insulin in response to hyperglycemia; therefore, it may be necessary to adjust the dose of antidiabetic drugs.

Thyrotoxicosis—Beta-adrenergic blockade may mask certain clinical signs (e.g., tachycardia) of hyperthyroidism. Patients suspected of developing thyrotoxicosis should be managed carefully to avoid abrupt withdrawal of beta-adrenergic blockade which might precipitate a thyroid storm.

Bendroflumethiazide

Thiazides should be used with caution in severe renal disease. In patients with renal disease, thiazides may precipitate azotemia. Cumulative effects of the drug may develop in patients with impaired renal function.

Thiazides should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma.

Sensitivity reactions may occur in patients with or without a history of allergy or bronchial asthma.

The possibility of exacerbation or activation of systemic lupus erythematosus has been reported.

Lithium generally should not be given with diuretics; diuretic agents reduce the renal clearance of lithium and add a high risk of lithium toxicity. Refer to the package insert for lithium preparations before use of such concomitant therapy.


PRECAUTIONS

General

Nadolol

Nadolol should be used with caution in patients with impaired renal function (see DOSAGE AND ADMINISTRATION).

Bendroflumethiazide

Periodic determination of serum electrolytes to detect possible electrolyte imbalance should be performed at appropriate intervals.

All patients receiving thiazide therapy should be observed for clinical signs of fluid or electrolyte imbalance, namely: hyponatremia, hypochloremic alkalosis, and hypokalemia. Serum and urine electrolyte determinations are particularly important when the patient is vomiting excessively or receiving parenteral fluids. Warning signs or symptoms of fluid and electrolyte imbalance may include: dryness of the mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, and gastrointestinal disturbances, such as nausea and vomiting.

Hypokalemia may develop, especially with brisk diuresis or when severe cirrhosis is present.

Interference with adequate oral electrolyte intake will also contribute to hypokalemia. Hypokalemia can sensitize or exaggerate the response of the heart to the toxic effects of digitalis (e.g., increased ventricular irritability). Concurrent administration of a potassium-sparing diuretic or potassium supplements may be indicated in these patients.

Any chloride deficit is generally mild and usually does not require specific treatment except under extraordinary circumstances (as in liver disease or renal disease). Dilutional hyponatremia may occur in edematous patients in hot weather; appropriate therapy is water restriction, rather than administration of salt, except in rare instances when the hyponatremia is life-threatening. In actual salt depletion, appropriate replacement is the therapy of choice.

Hyperuricemia may occur or frank gout may be precipitated in certain patients receiving thiazide therapy.

Latent diabetes mellitus may become manifest during thiazide administration.

The antihypertensive effect of thiazide diuretics may be enhanced in the postsympathectomy patient.

If progressive renal impairment becomes evident, as indicated by a rising nonprotein nitrogen or blood urea nitrogen (BUN), a careful reappraisal of therapy is necessary with consideration given to withholding or discontinuing diuretic therapy.

Thiazides may decrease serum PBI levels without signs of thyroid disturbance.

Calcium excretion is decreased by thiazides. Pathological changes in the parathyroid gland with hypercalcemia and hypophosphatemia have been observed in a few patients on prolonged thiazide therapy. The common complications of hyperparathyroidism such as renal lithiasis, bone resorption, and peptic ulceration have not been seen. Thiazides should be discontinued before carrying out tests for parathyroid function.

Thiazides have been shown to increase the urinary excretion of magnesium; this may result in hypomagnesemia.

Information for Patients

Patients, especially those with evidence of coronary artery insufficiency, should be warned against interruption or discontinuation of therapy without the physician's advice. Although cardiac failure rarely occurs in properly selected patients, patients being treated with beta-adrenergic blocking agents should be advised to consult the physician at the first sign or symptom of impending failure.

The patient should also be advised of a proper course in the event of an inadvertently missed dose.

The patient should be informed of symptoms that would suggest potential adverse effects and told to report them promptly.

Laboratory Tests

Serum electrolyte levels should be regularly monitored (see WARNINGS, Bendroflumethiazide, also PRECAUTIONS, General, Bendroflumethiazide).

Drug Interactions

Nadolol

When administered concurrently the following drugs may interact with beta-adrenergic receptor blocking agents:

Anesthetics, general—exaggeration of the hypotension induced by general anesthetics (see WARNINGS, Nadolol, Major Surgery).

Antidiabetic drugs (oral agents and insulin)—hypoglycemia or hyperglycemia; adjust dosage of antidiabetic drug accordingly (see WARNINGS, Nadolol, Diabetes and Hypoglycemia).

Catecholamine-depleting drugs (e.g., reserpine)—additive effect; monitor closely for evidence of hypotension and/or excessive bradycardia (e.g., vertigo, syncope, postural hypotension).

Digitalis glycosides—Both digitalis glycosides and beta-blockers slow atrioventricular conduction and decrease heart rate. Concomitant use can increase the risk of bradycardia.

Response to Treatment for Anaphylactic Reaction—While taking beta-blockers, patients with a history of severe anaphylactic reaction to a variety of allergens may be more reactive to repeated challenge, either accidental, diagnostic, or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat allergic reaction.

Bendroflumethiazide

When administered concurrently the following drugs may interact with thiazide diuretics:

Alcohol, barbiturates, or narcotics—potentiation of orthostatic hypotension may occur.

Amphotericin B, corticosteroids, or corticotropin (ACTH)—may intensify electrolyte imbalance, particularly hypokalemia. Monitor potassium levels; use potassium replacements if necessary.

Anticoagulants (oral)—dosage adjustments of anticoagulant medication may be necessary since bendroflumethiazide may decrease their effects.

Antigout medications—dosage adjustments of antigout medication may be necessary since bendroflumethiazide may raise the level of blood uric acid.

Other antihypertensive medications (e.g., ganglionic or peripheral adrenergic blocking agents)—dosage adjustments may be necessary since bendroflumethiazide may potentiate their effects.

Antidiabetic drugs (oral agents and insulin)—since thiazides may elevate blood glucose levels, dosage adjustments of antidiabetic agents may be necessary.

Calcium salts—increased serum calcium levels due to decreased excretion may occur. If calcium must be prescribed monitor serum calcium levels and adjust calcium dosage accordingly.

Cardiac glycosides—enhanced possibility of digitalis toxicity associated with hypokalemia. Monitor potassium levels; use potassium replacement if necessary.

Cholestyramine resin and colestipol HCl—may delay or decrease absorption of bendroflumethiazide. Sulfonamide diuretics should be taken at least one hour before or four to six hours after these medications.

Diazoxide—enhanced hyperglycemic, hyperuricemic, and antihypertensive effects. Be cognizant of possible interaction; monitor blood glucose and serum uric acid levels.

Lithium salts—may enhance lithium toxicity due to reduced renal clearance. Avoid concurrent use; if lithium must be prescribed monitor serum lithium levels and adjust lithium dosage accordingly. (See WARNINGS.)

MAO inhibitors—dosage adjustments of one or both agents may be necessary since hypotensive effects are enhanced.

Nondepolarizing muscle relaxants, preanesthetics and anesthetics used in surgery (e.g., tubocurarine chloride and gallamine triethiodide)—effects of these agents may be potentiated; dosage adjustments may be required. Monitor and correct any fluid and electrolyte imbalances prior to surgery if feasible.

Nonsteroidal anti-inflammatory agents—in some patients, the administration of a nonsteroidal anti-inflammatory agent can reduce the diuretic, natriuretic, and antihypertensive effect of loop, potassium-sparing or thiazide diuretics. Therefore, when bendroflumethiazide and nonsteroidal anti-inflammatory agents are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained.

Methenamine—possible decreased effectiveness due to alkalinization of the urine.

Pressor amines (e.g., norepinephrine)—decreased arterial responsiveness, but not sufficient to preclude effectiveness of the pressor agent for therapeutic use. Use caution in patients taking both medications who undergo surgery. Administer preanesthetic and anesthetic agents in reduced dosage, and if possible, discontinue bendroflumethiazide one week prior to surgery.

Probenecid or sulfinpyrazone—increased dosage of these agents may be necessary since bendroflumethiazide may have hyperuricemic effects.

Drug/Laboratory Test Interactions

Bendroflumethiazide may produce false-negative results with the phentolamine and tyramine tests; may interfere with the phenolsulfonphthalein test due to decreased excretion; and it may cause diagnostic interference of serum electrolyte levels, blood and urine glucose levels, and a decrease in serum PBI levels without signs of thyroid disturbance.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Nadolol

In chronic oral toxicologic studies (one to two years) in mice, rats, and dogs, nadolol did not produce any significant toxic effects. In two-year oral carcinogenicity studies in rats and mice, nadolol did not produce any neoplastic, preneoplastic, or nonneoplastic pathologic lesions. In fertility and general reproductive performance studies in rats, nadolol caused no adverse effect.

Bendroflumethiazide

Studies have not been performed to evaluate carcinogenic potential, mutagenesis, or whether this drug adversely affects fertility in males or females.

Pregnancy—Teratogenic Effects

Nadolol

In animal reproduction studies with nadolol, evidence of embryo-and fetotoxicity was found in rabbits, but not in rats or hamsters, at doses 5 to 10 times greater (on a mg/kg basis) than the maximum indicated human dose. No teratogenic potential was observed in any of these species.

There are no adequate and well-controlled studies in pregnant women. Nadolol should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Neonates whose mothers are receiving nadolol at parturition have exhibited bradycardia, hypoglycemia, and associated symptoms.

Bendroflumethiazide

Animal reproduction studies have not been conducted with bendroflumethiazide. It is also not known whether this drug can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Bendroflumethiazide should be given to a pregnant woman only if clearly needed.

Pregnancy—Nonteratogenic Effects

Thiazides cross the placental barrier and appear in cord blood. The use of thiazides in pregnant women requires that the anticipated benefit be weighed against possible hazards to the fetus. These hazards include fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions which have occurred in the adult.

Nursing Mothers

Both nadolol and bendroflumethiazide are excreted in human milk. Because of the potential for serious adverse reactions in nursing infants from both drugs, a decision should be made whether to discontinue nursing or to discontinue therapy taking into account the importance of CORZIDE (Nadolol and Bendroflumethiazide Tablets) to the mother.

Pediatric Use

Safety and effectiveness in pediatric patients have not been established.

Geriatric Use

Clinical studies of Corzide did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. This drug is known to be substantially excreted by the kidney, and the risk of toxic reaction to this drug may be greater in patients with impaired function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

ADVERSE REACTIONS

Nadolol

Most adverse effects have been mild and transient and have rarely required withdrawal of therapy.

Cardiovascular—Bradycardia with heart rates of less than 60 beats per minute occurs commonly, and heart rates below 40 beats per minute and/or symptomatic bradycardia were seen in about 2 of 100 patients. Symptoms of peripheral vascular insufficiency, usually of the Raynaud type, have occurred in approximately 2 of 100 patients. Cardiac failure, hypotension, and rhythm/conduction disturbances have each occurred in about 1 of 100 patients. Single instances of first degree and third degree heart block have been reported; intensification of AV block is a known effect of beta-blockers (see also CONTRAINDICATIONS, WARNINGS, and PRECAUTIONS).

Central Nervous System—Dizziness or fatigue has been reported in approximately 2 of 100 patients; paresthesias, sedation, and change in behavior have each been reported in approximately 6 of 1000 patients.

Respiratory—Bronchospasm has been reported in approximately 1 of 1000 patients (see CONTRAINDICATIONS and WARNINGS).

Gastrointestinal—Nausea, diarrhea, abdominal discomfort, constipation, vomiting, indigestion, anorexia, bloating, and flatulence have been reported in 1 to 5 of 1000 patients.

Miscellaneous—Each of the following has been reported in 1 to 5 of 1000 patients: rash; pruritus; headache; dry mouth, eyes, or skin; impotence or decreased libido; facial swelling; weight gain; slurred speech; cough; nasal stuffiness; sweating; tinnitus; blurred vision. Reversible alopecia has been reported infrequently.

The following adverse reactions have been reported in patients taking nadolol and/or other beta-adrenergic blocking agents, but no causal relationship to nadolol has been established.

Central Nervous System—Reversible mental depression progressing to catatonia; visual disturbances; hallucinations; an acute reversible syndrome characterized by disorientation for time and place, short-term memory loss, emotional lability with slightly clouded sensorium, and decreased performance on neuropsychometrics.

Gastrointestinal—Mesenteric arterial thrombosis; ischemic colitis; elevated liver enzymes.

Hematologic—Agranulocytosis; thrombocytopenic or nonthrombocytopenic purpura.

Allergic—Fever combined with aching and sore throat; laryngospasm; respiratory distress.

Miscellaneous—Pemphigoid rash; hypertensive reaction in patients with pheochromocytoma; sleep disturbances; Peyronie's disease.

The oculomucocutaneous syndrome associated with the beta-blocker practolol has not been reported with nadolol.

Bendroflumethiazide

Gastrointestinal—Nausea, vomiting, cramping and anorexia are not uncommon; diarrhea, constipation, gastric irritation, abdominal bloating, jaundice (intrahepatic cholestatic jaundice), hepatitis, and sialadenitis occasionally occur; and pancreatitis has been reported.

Central Nervous System—Dizziness, vertigo, paresthesia, headache, and xanthopsia occasionally occur.

Hematologic—Leukopenia, agranulocytosis, thrombocytopenia, hemolytic anemia, and aplastic anemia have been reported.

Dermatologic-Hypersensitivity—Purpura, exfoliative dermatitis, pruritus, ecchymosis, urticaria, necrotizing angiitis (vasculitis, cutaneous vasculitis), respiratory distress including pneumonitis, fever, and anaphylactic reactions occasionally occur; photosensitivity and rash have been reported.

Cardiovascular—Orthostatic hypotension may occur and may be potentiated by coadministration with certain other drugs (e.g., alcohol, barbiturates, narcotics, other antihypertensive medications, etc.; see PRECAUTIONS, Drug Interactions).

Other—Muscle spasm, weakness, or restlessness is not uncommon; hyperglycemia, glycosuria, metabolic acidosis in diabetic patients, hyperuricemia, allergic glomerulonephritis, and transient blurred vision occasionally occur.

Whenever adverse reactions are moderate or severe, thiazide dosage should be reduced or therapy withdrawn.

INDICATIONS

CORZIDE (Nadolol and Bendroflumethiazide Tablets) is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including the classes to which this drug principally belongs. There are no controlled trials demonstrating risk reduction with CORZIDE.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

CORZIDE (Nadolol and Bendroflumethiazide Tablets) is not indicated for initial therapy of hypertension. If the fixed combination represents the dose titrated to the individual patient's needs, it may be more convenient than the separate components.

CYTOMEL® (liothyronine sodium)

These highlights do not include all the information needed to use CYTOMEL safety and effectively. See full prescribing information for CYTOMEL.

Contraindications

Thyroid hormone preparations are generally contraindicated in patients with diagnosed but as yet uncorrected adrenal cortical insufficiency, untreated thyrotoxicosis and apparent hypersensitivity to any of their active or extraneous constituents. There is no well-documented evidence from the literature, however, of true allergic or idiosyncratic reactions to thyroid hormone.

Warnings

Drugs with thyroid hormone activity, alone or together with other therapeutic agents, have been used for the treatment of obesity. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life-threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects.

The use of thyroid hormones in the therapy of obesity, alone or combined with other drugs, is unjustified and has been shown to be ineffective. Neither is their use justified for the treatment of male or female infertility unless this condition is accompanied by hypothyroidism.

Thyroid hormones should be used with great caution in a number of circumstances where the integrity of the cardiovascular system, particularly the coronary arteries, is suspected. These include patients with angina pectoris or the elderly, in whom there is a greater likelihood of occult cardiac disease. In these patients, liothyronine sodium therapy should be initiated with low doses, with due consideration for its relatively rapid onset of action. Starting dosage of Cytomel (liothyronine sodium) Tablets is 5 mcg daily, and should be increased by no more than 5 mcg increments at 2-week intervals. When, in such patients, a euthyroid state can only be reached at the expense of an aggravation of the cardiovascular disease, thyroid hormone dosage should be reduced.

Morphologic hypogonadism and nephrosis should be ruled out before the drug is administered. If hypopituitarism is present, the adrenal deficiency must be corrected prior to starting the drug. Myxedematous patients are very sensitive to thyroid; dosage should be started at a very low level and increased gradually.

Severe and prolonged hypothyroidism can lead to a decreased level of adrenocortical activity commensurate with the lowered metabolic state. When thyroid-replacement therapy is administered, the metabolism increases at a greater rate than adrenocortical activity. This can precipitate adrenocortical insufficiency. Therefore, in severe and prolonged hypothyroidism, supplemental adrenocortical steroids may be necessary. In rare instances the administration of thyroid hormone may precipitate a hyperthyroid state or may aggravate existing hyperthyroidism.


Precautions

General

Thyroid hormone therapy in patients with concomitant diabetes mellitus or insipidus or adrenal cortical insufficiency aggravates the intensity of their symptoms. Appropriate adjustments of the various therapeutic measures directed at these concomitant endocrine diseases are required.

The therapy of myxedema coma requires simultaneous administration of glucocorticoids.

Hypothyroidism decreases and hyperthyroidism increases the sensitivity to oral anticoagulants. Prothrombin time should be closely monitored in thyroid-treated patients on oral anticoagulants and dosage of the latter agents adjusted on the basis of frequent prothrombin time determinations. In infants, excessive doses of thyroid hormone preparations may produce craniosynostosis.

Information for Patients

Patients on thyroid hormone preparations and parents of pediatric patients on thyroid therapy should be informed that:

Replacement therapy is to be taken essentially for life, with the exception of cases of transient hypothyroidism, usually associated with thyroiditis, and in those patients receiving a therapeutic trial of the drug.

They should immediately report during the course of therapy any signs or symptoms of thyroid hormone toxicity, e.g., chest pain, increased pulse rate, palpitations, excessive sweating, heat intolerance, nervousness, or any other unusual event.

In case of concomitant diabetes mellitus, the daily dosage of antidiabetic medication may need readjustment as thyroid hormone replacement is achieved. If thyroid medication is stopped, a downward readjustment of the dosage of insulin or oral hypoglycemic agent may be necessary to avoid hypoglycemia. At all times, close monitoring of urinary glucose levels is mandatory in such patients.

In case of concomitant oral anticoagulant therapy, the prothrombin time should be measured frequently to determine if the dosage of oral anticoagulants is to be readjusted.

Partial loss of hair may be experienced by pediatric patients in the first few months of thyroid therapy, but this is usually a transient phenomenon and later recovery is usually the rule.

Laboratory Tests

Treatment of patients with thyroid hormones requires the periodic assessment of thyroid status by means of appropriate laboratory tests besides the full clinical evaluation. The TSH suppression test can be used to test the effectiveness of any thyroid preparation, bearing in mind the relative insensitivity of the infant pituitary to the negative feedback effect of thyroid hormones. Serum T4 levels can be used to test the effectiveness of all thyroid medications except products containing liothyronine sodium. When the total serum T4 is low but TSH is normal, a test specific to assess unbound (free) T4 levels is warranted. Specific measurements of T4 and T3 by competitive protein binding or radioimmunoassay are not influenced by blood levels of organic or inorganic iodine and have essentially replaced older tests of thyroid hormone measurements, i.e., PBI, BEI and T4 by column.

Drug Interactions

Oral Anticoagulants

Thyroid hormones appear to increase catabolism of vitamin K-dependent clotting factors. If oral anticoagulants are also being given, compensatory increases in clotting factor synthesis are impaired. Patients stabilized on oral anticoagulants who are found to require thyroid replacement therapy should be watched very closely when thyroid is started. If a patient is truly hypothyroid, it is likely that a reduction in anticoagulant dosage will be required. No special precautions appear to be necessary when oral anticoagulant therapy is begun in a patient already stabilized on maintenance thyroid replacement therapy.

Insulin or Oral Hypoglycemics

Initiating thyroid replacement therapy may cause increases in insulin or oral hypoglycemic requirements. The effects seen are poorly understood and depend upon a variety of factors such as dose and type of thyroid preparations and endocrine status of the patient. Patients receiving insulin or oral hypoglycemics should be closely watched during initiation of thyroid replacement therapy.

Cholestyramine

Cholestyramine binds both T4 and T3 in the intestine, thus impairing absorption of these thyroid hormones. In vitro studies indicate that the binding is not easily removed. Therefore, 4 to 5 hours should elapse between administration of cholestyramine and thyroid hormones.

Estrogen, Oral Contraceptives

Estrogens tend to increase serum thyroxine-binding globulin (TBg). In a patient with a nonfunctioning thyroid gland who is receiving thyroid replacement therapy, free levothyroxine may be decreased when estrogens are started thus increasing thyroid requirements. However, if the patient's thyroid gland has sufficient function, the decreased free thyroxine will result in a compensatory increase in thyroxine output by the thyroid. Therefore, patients without a functioning thyroid gland who are on thyroid replacement therapy may need to increase their thyroid dose if estrogens or estrogen-containing oral contraceptives are given.

Tricyclic Antidepressants

Use of thyroid products with imipramine and other tricyclic antidepressants may increase receptor sensitivity and enhance antidepressant activity; transient cardiac arrhythmias have been observed. Thyroid hormone activity may also be enhanced.

Digitalis

Thyroid preparations may potentiate the toxic effects of digitalis. Thyroid hormonal replacement increases metabolic rate, which requires an increase in digitalis dosage.

Ketamine

When administered to patients on a thyroid preparation, this parenteral anesthetic may cause hypertension and tachycardia. Use with caution and be prepared to treat hypertension, if necessary.

Vasopressors

Thyroxine increases the adrenergic effect of catecholamines such as epinephrine and norepinephrine. Therefore, injection of these agents into patients receiving thyroid preparations increases the risk of precipitating coronary insufficiency, especially in patients with coronary artery disease. Careful observation is required.

Drug and Laboratory Test Interactions

The following drugs or moieties are known to interfere with laboratory tests performed in patients on thyroid hormone therapy: androgens, corticosteroids, estrogens, oral contraceptives containing estrogens, iodine-containing preparations and the numerous preparations containing salicylates.

Changes in TBg concentration should be taken into consideration in the interpretation of T4 and T3 values. In such cases, the unbound (free) hormone shouldbemeasured. Pregnancy, estrogens and estrogen-containing oral contraceptives increase TBg concentrations. TBg may also be increased during infectious hepatitis. Decreases in TBg concentrations are observed in nephrosis, acromegaly and after androgen or corticosteroid therapy. Familial hyper- or hypo-thyroxine-binding-globulinemias have been described. The incidence of TBg deficiency approximates 1 in 9000. The binding of thyroxine by thyroxine-binding prealbumin (TBPA) is inhibited by salicylates.

Medicinal or dietary iodine interferes with all in vivo tests of radioiodine uptake, producing low uptakes which may not be reflective of a true decrease in hormone synthesis.

The persistence of clinical and laboratory evidence of hypothyroidism in spite of adequate dosage replacement indicates either poor patient compliance, poor absorption, excessive fecal loss, or inactivity of the preparation. Intracellular resistance to thyroid hormone is quite rare.

Carcinogenesis, Mutagenesis, Impairment of Fertility

A reportedly apparent association between prolonged thyroid therapy and breast cancer has not been confirmed and patients on thyroid for established indications should not discontinue therapy. No confirmatory long-term studies in animals have been performed to evaluate carcinogenic potential, mutagenicity, or impairment of fertility in either males or females.

Pregnancy

Category A

Thyroid hormones do not readily cross the placental barrier. The clinical experience to date does not indicate any adverse effect on fetuses when thyroid hormones are administered to pregnant women. On the basis of current knowledge, thyroid replacement therapy to hypothyroid women should not be discontinued during pregnancy.

Nursing Mothers

Minimal amounts of thyroid hormones are excreted in human milk. Thyroid is not associated with serious adverse reactions and does not have a known tumorigenic potential. However, caution should be exercised when thyroid is administered to a nursing woman.

Geriatric Use

Clinical studies of liothyronine sodium did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Pediatric Use

Pregnant mothers provide little or no thyroid hormone to the fetus. The incidence of congenital hypothyroidism is relatively high (1:4000) and the hypothyroid fetus would not derive any benefit from the small amounts of hormone crossing the placental barrier. Routine determinations of serum T4 and/or TSH is strongly advised in neonates in view of the deleterious effects of thyroid deficiency on growth and development.

Treatment should be initiated immediately upon diagnosis and maintained for life, unless transient hypothyroidism is suspected, in which case, therapy may be interrupted for 2 to 8 weeks after the age of 3 years to reassess the condition. Cessation of therapy is justified in patients who have maintained a normal TSH during those 2 to 8 weeks.

Adverse Reactions

Adverse reactions, other than those indicative of hyperthyroidism because of therapeutic overdosage, either initially or during the maintenance period are rare (see Overdosage).

In rare instances, allergic skin reactions have been reported with Cytomel (liothyronine sodium) Tablets.

Indications and Usage

Thyroid hormone drugs are indicated:

As replacement or supplemental therapy in patients with hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. This category includes cretinism, myxedema and ordinary hypothyroidism in patients of any age (pediatric patients, adults, the elderly), or state (including pregnancy); primary hypothyroidism resulting from functional deficiency, primary atrophy, partial or total absence of thyroid gland, or the effects of surgery, radiation, or drugs, with or without the presence of goiter; and secondary (pituitary) or tertiary (hypothalamic) hypothyroidism (see Warnings).

As pituitary thyroid-stimulating hormone (TSH) suppressants, in the treatment or prevention of various types of euthyroid goiters, including thyroid nodules, subacute or chronic lymphocytic thyroiditis (Hashimoto's) and multinodular goiter.

As diagnostic agents in suppression tests to differentiate suspected mild hyperthyroidism or thyroid gland autonomy.

Cytomel (liothyronine sodium) Tablets can be used in patients allergic to desiccated thyroid or thyroid extract derived from pork or beef.

GLUCOTROL® (glipizide)

These highlights do not include all the information needed to use GLUCOTROL safety and effectively. See full prescribing information for GLUCOTROL.

CONTRAINDICATIONS

GLUCOTROL is contraindicated in patients with:

  1. Known hypersensitivity to the drug.
  2. Type 1 diabetes mellitus, diabetic ketoacidosis, with or without coma. This condition should be treated with insulin.

WARNINGS

SPECIAL WARNING ON INCREASED RISK OF CARDIOVASCULAR MORTALITY

The administration of oral hypoglycemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. This warning is based on the study conducted by the University Group Diabetes Program (UGDP), a long-term prospective clinical trial designed to evaluate the effectiveness of glucose-lowering drugs in preventing or delaying vascular complications in patients with non-insulin-dependent diabetes. The study involved 823 patients who were randomly assigned to one of four treatment groups (Diabetes, 19, supp. 2: 747–830, 1970). UGDP reported that patients treated for 5 to 8 years with diet plus a fixed dose of tolbutamide (1.5 grams per day) had a rate of cardiovascular mortality approximately 2½ times that of patients treated with diet alone. A significant increase in total mortality was not observed, but the use of tolbutamide was discontinued based on the increase in cardiovascular mortality, thus limiting the opportunity for the study to show an increase in overall mortality. Despite controversy regarding the interpretation of these results, the findings of the UGDP study provide an adequate basis for this warning. The patient should be informed of the potential risks and advantages of GLUCOTROL and of alternative modes of therapy.

Although only one drug in the sulfonylurea class (tolbutamide) was included in this study, it is prudent from a safety standpoint to consider that this warning may also apply to other oral hypoglycemic drugs in this class, in view of their close similarities in mode of action and chemical structure.


PRECAUTIONS

General

Macrovascular Outcomes

There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with GLUCOTROL or any other anti-diabetic drug.

Renal and Hepatic Disease

The metabolism and excretion of GLUCOTROL may be slowed in patients with impaired renal and/or hepatic function. If hypoglycemia should occur in such patients, it may be prolonged and appropriate management should be instituted.

Hypoglycemia

All sulfonylurea drugs are capable of producing severe hypoglycemia. Proper patient selection, dosage, and instructions are important to avoid hypoglycemic episodes. Renal or hepatic insufficiency may cause elevated blood levels of GLUCOTROL and the latter may also diminish gluconeogenic capacity, both of which increase the risk of serious hypoglycemic reactions. Elderly, debilitated or malnourished patients, and those with adrenal or pituitary insufficiency, are particularly susceptible to the hypoglycemic action of glucose-lowering drugs. Hypoglycemia may be difficult to recognize in the elderly, and in people who are taking beta-adrenergic blocking drugs. Hypoglycemia is more likely to occur when caloric intake is deficient, after severe or prolonged exercise, when alcohol is ingested, or when more than one glucose-lowering drug is used.

Loss of Control of Blood Glucose

When a patient stabilized on any diabetic regimen is exposed to stress such as fever, trauma, infection, or surgery, a loss of control may occur. At such times, it may be necessary to discontinue GLUCOTROL and administer insulin.

The effectiveness of any oral hypoglycemic drug, including GLUCOTROL, in lowering blood glucose to a desired level decreases in many patients over a period of time, which may be due to progression of the severity of the diabetes or to diminished responsiveness to the drug. This phenomenon is known as secondary failure, to distinguish it from primary failure in which the drug is ineffective in an individual patient when first given.

Hemolytic Anemia

Treatment of patients with glucose 6-phosphate dehydrogenase (G6PD) deficiency with sulfonylurea agents can lead to hemolytic anemia. Because GLUCOTROL belongs to the class of sulfonylurea agents, caution should be used in patients with G6PD deficiency and a non-sulfonylurea alternative should be considered. In post-marketing reports, hemolytic anemia has also been reported in patients who did not have known G6PD deficiency.

Laboratory Tests

Blood and urine glucose should be monitored periodically. Measurement of glycosylated hemoglobin may be useful.

Information for Patients

Patients should be informed of the potential risks and advantages of GLUCOTROL and of alternative modes of therapy. They should also be informed about the importance of adhering to dietary instructions, of a regular exercise program, and of regular testing of urine and/or blood glucose.

The risks of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be explained to patients and responsible family members. Primary and secondary failure should also be explained.

Physician Counseling Information for Patients

In initiating treatment for type 2 diabetes, diet should be emphasized as the primary form of treatment. Caloric restriction and weight loss are essential in the obese diabetic patient. Proper dietary management alone may be effective in controlling the blood glucose and symptoms of hyperglycemia. The importance of regular physical activity should also be stressed, and cardiovascular risk factors should be identified and corrective measures taken where possible. Use of GLUCOTROL or other antidiabetic medications must be viewed by both the physician and patient as a treatment in addition to diet and not as a substitution or as a convenient mechanism for avoiding dietary restraint. Furthermore, loss of blood glucose control on diet alone may be transient, thus requiring only short-term administration of GLUCOTROL or other antidiabetic medications. Maintenance or discontinuation of GLUCOTROL or other antidiabetic medications should be based on clinical judgment using regular clinical and laboratory evaluations.

Drug Interactions

The hypoglycemic action of sulfonylureas may be potentiated by certain drugs including nonsteroidal anti-inflammatory agents, some azoles, and other drugs that are highly protein bound, salicylates, sulfonamides, chloramphenicol, probenecid, coumarins, monoamine oxidase inhibitors, quinolones and beta adrenergic blocking agents. When such drugs are administered to a patient receiving GLUCOTROL, the patient should be observed closely for hypoglycemia. When such drugs are withdrawn from a patient receiving GLUCOTROL, the patient should be observed closely for loss of control. In vitro binding studies with human serum proteins indicate that GLUCOTROL binds differently than tolbutamide and does not interact with salicylate or dicumarol. However, caution must be exercised in extrapolating these findings to the clinical situation and in the use of GLUCOTROL with these drugs.

Certain drugs tend to produce hyperglycemia and may lead to loss of control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving GLUCOTROL, the patient should be closely observed for loss of control. When such drugs are withdrawn from a patient receiving GLUCOTROL, the patient should be observed closely for hypoglycemia.

A potential interaction between oral miconazole and oral hypoglycemic agents leading to severe hypoglycemia has been reported. Whether this interaction also occurs with the intravenous, topical, or vaginal preparations of miconazole is not known. The effect of concomitant administration of DIFLUCAN® (fluconazole) and GLUCOTROL has been demonstrated in a placebo-controlled crossover study in normal volunteers. All subjects received GLUCOTROL alone and following treatment with 100 mg of DIFLUCAN as a single daily oral dose for 7 days. The mean percentage increase in the GLUCOTROL AUC after fluconazole administration was 56.9% (range: 35 to 81).

In studies assessing the effect of colesevelam on the pharmacokinetics of glipizide ER in healthy volunteers, reductions in glipizide AUC0–∞ and Cmax of 12% and 13%, respectively were observed when colesevelam was coadministered with glipizide ER. When glipizide ER was administered 4 hours prior to colesevelam, there was no significant change in glipizide AUC0–∞ or Cmax, -4% and 0%, respectively. Therefore, GLUCOTROL should be administered at least 4 hours prior to colesevelam to ensure that colesevelam does not reduce the absorption of glipizide.

Carcinogenesis, Mutagenesis, Impairment of Fertility

A twenty month study in rats and an eighteen month study in mice at doses up to 75 times the maximum human dose revealed no evidence of drug-related carcinogenicity. Bacterial and in vivo mutagenicity tests were uniformly negative. Studies in rats of both sexes at doses up to 75 times the human dose showed no effects on fertility.

Pregnancy

GLUCOTROL (glipizide) was found to be mildly fetotoxic in rat reproductive studies at all dose levels (5–50 mg/kg). This fetotoxicity has been similarly noted with other sulfonylureas, such as tolbutamide and tolazamide. The effect is perinatal and believed to be directly related to the pharmacologic (hypoglycemic) action of GLUCOTROL. In studies in rats and rabbits, no teratogenic effects were found. There are no adequate and well controlled studies in pregnant women. GLUCOTROL should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Because recent information suggests that abnormal blood glucose levels during pregnancy are associated with a higher incidence of congenital abnormalities, many experts recommend that insulin be used during pregnancy to maintain blood glucose levels as close to normal as possible.

Nonteratogenic Effects

Prolonged severe hypoglycemia (4 to 10 days) has been reported in neonates born to mothers who were receiving a sulfonylurea drug at the time of delivery. This has been reported more frequently with the use of agents with prolonged half-lives. If GLUCOTROL is used during pregnancy, it should be discontinued at least one month before the expected delivery date.

Nursing Mothers

Although it is not known whether GLUCOTROL is excreted in human milk, some sulfonylurea drugs are known to be excreted in human milk. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. If the drug is discontinued and if diet alone is inadequate for controlling blood glucose, insulin therapy should be considered.

Pediatric Use

Safety and effectiveness in children have not been established.

Geriatric Use

A determination has not been made whether controlled clinical studies of GLUCOTROL included sufficient numbers of subjects aged 65 and over to define a difference in response from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

ADVERSE REACTIONS

In U.S. and foreign controlled studies, the frequency of serious adverse reactions reported was very low. Of 702 patients, 11.8% reported adverse reactions and in only 1.5% was GLUCOTROL discontinued.

Hypoglycemia

See PRECAUTIONS and OVERDOSAGE sections.

Gastrointestinal

Gastrointestinal disturbances are the most common reactions. Gastrointestinal complaints were reported with the following approximate incidence: nausea and diarrhea, one in seventy; constipation and gastralgia, one in one hundred. They appear to be dose-related and may disappear on division or reduction of dosage. Cholestatic jaundice may occur rarely with sulfonylureas: GLUCOTROL should be discontinued if this occurs.

Dermatologic

Allergic skin reactions including erythema, morbilliform or maculopapular eruptions, urticaria, pruritus, and eczema have been reported in about one in seventy patients. These may be transient and may disappear despite continued use of GLUCOTROL; if skin reactions persist, the drug should be discontinued. Porphyria cutanea tarda and photosensitivity reactions have been reported with sulfonylureas.

Hematologic

Leukopenia, agranulocytosis, thrombocytopenia, hemolytic anemia (see PRECAUTIONS), aplastic anemia, and pancytopenia have been reported with sulfonylureas.

Metabolic

Hepatic porphyria and disulfiram-like reactions have been reported with sulfonylureas. In the mouse, GLUCOTROL pretreatment did not cause an accumulation of acetaldehyde after ethanol administration. Clinical experience to date has shown that GLUCOTROL has an extremely low incidence of disulfiram-like alcohol reactions.

Endocrine Reactions

Cases of hyponatremia and the syndrome of inappropriate antidiuretic hormone (SIADH) secretion have been reported with this and other sulfonylureas.

Miscellaneous

Dizziness, drowsiness, and headache have each been reported in about one in fifty patients treated with GLUCOTROL. They are usually transient and seldom require discontinuance of therapy.

Laboratory Tests

The pattern of laboratory test abnormalities observed with GLUCOTROL was similar to that for other sulfonylureas. Occasional mild to moderate elevations of SGOT, LDH, alkaline phosphatase, BUN, and creatinine were noted. One case of jaundice was reported. The relationship of these abnormalities to GLUCOTROL is uncertain, and they have rarely been associated with clinical symptoms.

Post-Marketing Experience

The following adverse events have been reported in post-marketing surveillance:

Hepatobiliary

Cholestatic and hepatocellular forms of liver injury accompanied by jaundice have been reported rarely in association with glipizide; GLUCOTROL should be discontinued if this occurs.

INDICATIONS AND USAGE

GLUCOTROL is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

GLUCOTROL® XL (glipizide extended release tablets)

These highlights do not include all the information needed to use GLUCOTROL XL safety and effectively. See full prescribing information for GLUCOTROL XL.

4 CONTRAINDICATIONS

Glipizide is contraindicated in patients with:

  • Known hypersensitivity to glipizide or any of the product's ingredients.
  • Hypersensitivity to sulfonamide derivatives.

5 WARNINGS AND PRECAUTIONS

5.1 Hypoglycemia

All sulfonylurea drugs, including GLUCOTROL XL, are capable of producing severe hypoglycemia [see Adverse Reactions (6)]. Concomitant use of GLUCOTROL XL with other anti-diabetic medication can increase the risk of hypoglycemia. A lower dose of GLUCOTROL XL may be required to minimize the risk of hypoglycemia when combining it with other anti-diabetic medications.

Educate patients to recognize and manage hypoglycemia. When initiating and increasing GLUCOTROL XL in patients who may be predisposed to hypoglycemia (e.g., the elderly, patients with renal impairment, patients on other anti-diabetic medications) start at 2.5 mg. Debilitated or malnourished patients, and those with adrenal, pituitary, or hepatic impairment are particularly susceptible to the hypoglycemic action of anti-diabetic medications. Hypoglycemia is also more likely to occur when caloric intake is deficient, after severe or prolonged exercise, or when alcohol is ingested.

The patient's ability to concentrate and react may be impaired as a result of hypoglycemia. Early warning symptoms of hypoglycemia may be different or less pronounced in patients with autonomic neuropathy, the elderly, and in patients who are taking beta-adrenergic blocking medications or other sympatholytic agents. These situations may result in severe hypoglycemia before the patient is aware of the hypoglycemia.

These impairments may present a risk in situations where these abilities are especially important, such as driving or operating other machinery. Severe hypoglycemia can lead to unconsciousness or convulsions and may result in temporary or permanent impairment of brain function or death.

5.2 Hemolytic Anemia

Treatment of patients with glucose 6-phosphate dehydrogenase (G6PD) deficiency with sulfonylurea agents, including GLUCOTROL XL, can lead to hemolytic anemia. Avoid use of GLUCOTROL XL in patients with G6PD deficiency. In post marketing reports, hemolytic anemia has also been reported in patients who did not have known G6PD deficiency.

5.3 Increased Risk of Cardiovascular Mortality with Sulfonylureas

The administration of oral hypoglycemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. This warning is based on the study conducted by the University Group Diabetes Program (UGDP), a long-term prospective clinical trial designed to evaluate the effectiveness of glucose-lowering drugs in preventing or delaying vascular complications in patients with type 2 diabetes mellitus. The study involved 823 patients who were randomly assigned to one of four treatment groups.

UGDP reported that patients treated for 5 to 8 years with diet plus a fixed dose of tolbutamide (1.5 grams per day) had a rate of cardiovascular mortality approximately 2½ times that of patients treated with diet alone. A significant increase in total mortality was not observed, but the use of tolbutamide was discontinued based on the increase in cardiovascular mortality, thus limiting the opportunity for the study to show an increase in overall mortality. Despite controversy regarding the interpretation of these results, the findings of the UGDP study provide an adequate basis for this warning. The patient should be informed of the potential risks and advantages of glipizide and of alternative modes of therapy.

Although only one drug in the sulfonylurea class (tolbutamide) was included in this study, it is prudent from a safety standpoint to consider that this warning may also apply to other oral hypoglycemic drugs in this class, in view of their close similarities in mode of action and chemical structure.

5.4 Macrovascular Outcomes

There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with GLUCOTROL XL or any other anti-diabetic drug.

5.5 Gastrointestinal Obstruction

There have been reports of obstructive symptoms in patients with known strictures in association with the ingestion of another drug with this non-dissolvable extended release formulation. Avoid use of GLUCOTROL XL in patients with preexisting severe gastrointestinal narrowing (pathologic or iatrogenic).

6 ADVERSE REACTIONS

The following serious adverse reactions are discussed in more detail below and elsewhere in the labeling:

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In clinical trials, 580 patients from 31 to 87 years of age received GLUCOTROL XL in doses from 5 mg to 60 mg in both controlled and open trials. The dosages above 20 mg are not recommended dosages. In these trials, approximately 180 patients were treated with GLUCOTROL XL for at least 6 months.

Table 1 summarizes the incidence of adverse reactions, other than hypoglycemia, that were reported in pooled double-blind, placebo-controlled trials in ≥3% of GLUCOTROL XL-treated patients and more commonly than in patients who received placebo.

Table 1: Incidence (%) of Adverse Reactions Reported in ≥3% of Patients Treated in Placebo-Controlled Clinical Trials and More Commonly in Patients Treated with GLUCOTROL XL (Excluding Hypoglycemia)
GLUCOTROL XL (%)
(N=278)
Placebo (%)
(N=69)
Adverse Effect
Dizziness 6.8 5.8
Diarrhea 5.4 0.0
Nervousness 3.6 2.9
Tremor 3.6 0.0
Flatulence 3.2 1.4

Hypoglycemia:

Of the 580 patients that received GLUCOTROL XL in clinical trials, 3.4% had hypoglycemia documented by a blood-glucose measurement <60 mg/dL and/or symptoms believed to be associated with hypoglycemia and 2.6% of patients discontinued for this reason. Hypoglycemia was not reported for any placebo patients.

Gastrointestinal Reactions

In clinical trials, the incidence of gastrointestinal (GI) side effects (nausea, vomiting, constipation, dyspepsia), occurred in less than 3% of GLUCOTROL XL-treated patients and were more common in GLUCOTROL XL-treated patients than those receiving placebo.

Dermatologic Reactions

In clinical trials, allergic skin reactions, i.e., urticaria occurred in less than 1.5% of treated patients and were more common in GLUCOTROL XL treated patients than those receiving placebo. These may be transient and may disappear despite continued use of glipizide XL; if skin reactions persist, the drug should be discontinued.

Laboratory Tests: Mild to moderate elevations of ALT, LDH, alkaline phosphatase, BUN and creatinine have been noted. The relationship of these abnormalities to glipizide is uncertain.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post approval use of GLUCOTROL XL. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

  • Abdominal pain
  • Cholestatic and hepatocellular forms of liver injury accompanied by jaundice
  • Leukopenia, agranulocytosis, thrombocytopenia, hemolytic anemia [see Warnings and Precautions (5.2)], aplastic anemia, pancytopenia
  • Hepatic porphyria and disulfiram-like reactions
  • Hyponatremia and the syndrome of inappropriate antidiuretic hormone (SIADH) secretion
  • Rash
  • There have been reports of gastrointestinal irritation and gastrointestinal bleeding with use of another drug with this non-dissolvable extended release formulation.

1 INDICATIONS AND USAGE

GLUCOTROL XL is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

1.1 Limitations of Use

GLUCOTROL XL is not recommended for the treatment of type 1 diabetes mellitus or diabetic ketoacidosis.

GLYNASE® PRESTAB® (micronized glyburide)

These highlights do not include all the information needed to use GLYNASE PRESTAB safety and effectively. See full prescribing information for GLYNASE PRESTAB.

CONTRAINDICATIONS

GLYNASE PresTab Tablets are contraindicated in patients with:

  1. Known hypersensitivity or allergy to the drug.
  2. Diabetic ketoacidosis, with or without coma. This condition should be treated with insulin.
  3. Type I diabetes mellitus.
  4. Concomitant administration of bosentan.

SPECIAL WARNING ON INCREASED RISK OF CARDIOVASCULAR MORTALITY

The administration of oral hypoglycemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. This warning is based on the study conducted by the University Group Diabetes Program (UGDP), a long-term prospective clinical trial designed to evaluate the effectiveness of glucose-lowering drugs in preventing or delaying vascular complications in patients with non-insulin-dependent diabetes. The study involved 823 patients who were randomly assigned to one of four treatment groups (Diabetes, 19 (Suppl. 2):747–830, 1970).

UGDP reported that patients treated for 5 to 8 years with diet plus a fixed dose of tolbutamide (1.5 grams per day) had a rate of cardiovascular mortality approximately 2 1/2 times that of patients treated with diet alone. A significant increase in total mortality was not observed, but the use of tolbutamide was discontinued based on the increase in cardiovascular mortality, thus limiting the opportunity for the study to show an increase in overall mortality. Despite controversy regarding the interpretation of these results, the findings of the UGDP study provide an adequate basis for this warning. The patient should be informed of the potential risks and advantages of GLYNASE PresTab and of alternative modes of therapy.

Although only one drug in the sulfonylurea class (tolbutamide) was included in this study, it is prudent from a safety standpoint to consider that this warning may also apply to other oral hypoglycemic drugs in this class, in view of their close similarities in mode of action and chemical structure.


PRECAUTIONS

Macrovascular Outcomes

There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with GLYNASE PresTab or any other anti-diabetic drug.

Bioavailability studies have demonstrated that GLYNASE PresTab Tablets 3 mg provide serum glyburide concentrations that are not bioequivalent to those from MICRONASE Tablets 5 mg. Therefore, patients should be retitrated when transferred from MICRONASE or Diabeta® or other oral hypoglycemic agents.

General

Hypoglycemia

All sulfonylureas including GLYNASE PresTab are capable of producing severe hypoglycemia. Proper patient selection and dosage and instructions are important to avoid hypoglycemic episodes. Renal or hepatic insufficiency may cause elevated drug levels of glyburide and the latter may also diminish gluconeogenic capacity, both of which increase the risk of serious hypoglycemic reactions. Elderly, debilitated or malnourished patients, and those with adrenal or pituitary insufficiency, are particularly susceptible to the hypoglycemic action of glucose-lowering drugs. Hypoglycemia may be difficult to recognize in the elderly and in people who are taking beta-adrenergic blocking drugs. Hypoglycemia is more likely to occur when caloric intake is deficient, after severe or prolonged exercise, when alcohol is ingested, or when more than one glucose lowering drug is used. The risk of hypoglycemia may be increased with combination therapy.

Loss of Control of Blood Glucose

When a patient stabilized on any diabetic regimen is exposed to stress such as fever, trauma, infection or surgery, a loss of control may occur. At such times it may be necessary to discontinue GLYNASE PresTab and administer insulin.

The effectiveness of any hypoglycemic drug, including GLYNASE PresTab, in lowering blood glucose to a desired level decreases in many patients over a period of time which may be due to progression of the severity of diabetes or to diminished responsiveness to the drug. This phenomenon is known as secondary failure, to distinguish it from primary failure in which the drug is ineffective in an individual patient when GLYNASE PresTab is first given. Adequate adjustment of dose and adherence to diet should be assessed before classifying a patient as a secondary failure.

Hemolytic Anemia

Treatment of patients with glucose 6-phosphate dehydrogenase (G6PD) deficiency with sulfonylurea agents can lead to hemolytic anemia. Because GLYNASE PresTab belongs to the class of sulfonylurea agents, caution should be used in patients with G6PD deficiency and a non-sulfonylurea alternative should be considered. In post marketing reports, hemolytic anemia has also been reported in patients who did not have known G6PD deficiency.

Information for Patients

Patients should be informed of the potential risks and advantages of GLYNASE PresTab and of alternative modes of therapy. They also should be informed about the importance of adherence to dietary instructions, of a regular exercise program, and of regular testing of urine and/or blood glucose.

The risks of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be explained to patients and responsible family members. Primary and secondary failure also should be explained.

Physician Counseling Information for Patients

In initiating treatment for type 2 diabetes, diet should be emphasized as the primary form of treatment. Caloric restriction and weight loss are essential in the obese diabetic patient. Proper dietary management alone may be effective in controlling the blood glucose and symptoms of hyperglycemia. The importance of regular physical activity should also be stressed, and cardiovascular risk factors should be identified and corrective measures taken where possible. Use of GLYNASE PresTab or other antidiabetic medications must be viewed by both the physician and patient as a treatment in addition to diet and not as a substitution or as a convenient mechanism for avoiding dietary restraint. Furthermore, loss of blood glucose control on diet alone may be transient, thus requiring only short-term administration of GLYNASE PresTab or other antidiabetic medications. Maintenance or discontinuation of GLYNASE PresTabs or other antidiabetic medications should be based on clinical judgment using regular clinical and laboratory evaluations.

Laboratory Tests

Therapeutic response to GLYNASE PresTab Tablets should be monitored by frequent urine glucose tests and periodic blood glucose tests. Measurement of glycosylated hemoglobin levels may be helpful in some patients.

Drug Interactions

The hypoglycemic action of sulfonylureas may be potentiated by certain drugs including nonsteroidal anti-inflammatory agents and other drugs that are highly protein bound, salicylates, sulfonamides, chloramphenicol, probenecid, coumarins, monoamine oxidase inhibitors, and beta adrenergic blocking agents. When such drugs are administered to a patient receiving glyburide, the patient should be observed closely for hypoglycemia. When such drugs are withdrawn from a patient receiving glyburide, the patient should be observed closely for loss of control.

An increased risk of liver enzyme elevations was observed in patients receiving glyburide concomitantly with bosentan. Therefore concomitant administration of GLYNASE PresTab and bosentan is contraindicated.

Certain drugs tend to produce hyperglycemia and may lead to loss of control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving glyburide, the patient should be closely observed for loss of control. When such drugs are withdrawn from a patient receiving glyburide, the patient should be observed closely for hypoglycemia.

A possible interaction between glyburide and ciprofloxacin, a fluoroquinolone antibiotic, has been reported, resulting in a potentiation of the hypoglycemic action of glyburide. The mechanism of action for this interaction is not known.

A potential interaction between oral miconazole and oral hypoglycemic agents leading to severe hypoglycemia has been reported. Whether this interaction also occurs with the intravenous, topical or vaginal preparations of miconazole is not known.

Metformin

In a single-dose interaction study in NIDDM subjects, decreases in glyburide AUC and Cmax were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects, makes the clinical significance of this interaction uncertain. Coadministration of glyburide and metformin did not result in any changes in either metformin pharmacokinetics or pharmacodynamics.

Colesevelam

Concomitant administration of colesevelam and glyburide resulted in reductions in glyburide AUC and Cmax of 32% and 47%, respectively. The reductions in glyburide AUC and Cmax were 20% and 15%, respectively when administered 1 hour before, and not significantly changed (-7% and 4%, respectively) when administered 4 hours before colesevelam.

Topiramate

A drug-drug interaction study conducted in patients with type 2 diabetes evaluated the steady-state pharmacokinetics of glyburide (5 mg/day) alone and concomitantly with topiramate (150 mg/day). There was a 22% decrease in Cmax and a 25% reduction in AUC24 for glyburide during topiramate administration. Systemic exposure (AUC) of the active metabolites, 4-trans-hydroxy-glyburide (M1) and 3-cis-hydroxyglyburide (M2), was also reduced by 13% and 15%, and Cmax was reduced by 18% and 25%, respectively. The steady-state pharmacokinetics of topiramate were unaffected by concomitant administration of glyburide.

Carcinogenesis, Mutagenesis, and Impairment of Fertility

Studies in rats at doses up to 300 mg/kg/day for 18 months showed no carcinogenic effects. Glyburide is nonmutagenic when studied in the Salmonella microsome test (Ames test) and in the DNA damage/alkaline elution assay.

No drug-related effects were noted in any of the criteria evaluated in the two-year oncogenicity study of glyburide in mice.

Pregnancy

Teratogenic Effects

Reproduction studies have been performed in rats and rabbits at doses up to 500 times the human dose and have revealed no evidence of impaired fertility or harm to the fetus due to glyburide. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Because recent information suggests that abnormal blood glucose levels during pregnancy are associated with a higher incidence of congenital abnormalities, many experts recommend that insulin be used during pregnancy to maintain blood glucose as close to normal as possible.

Nonteratogenic Effects

Prolonged severe hypoglycemia (4 to 10 days) has been reported in neonates born to mothers who were receiving a sulfonylurea drug at the time of delivery. This has been reported more frequently with the use of agents with prolonged half-lives. If GLYNASE PresTab is used during pregnancy, it should be discontinued at least two weeks before the expected delivery date.

Nursing Mothers

Although it is not known whether glyburide is excreted in human milk, some sulfonylurea drugs are known to be excreted in human milk. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. If the drug is discontinued, and if diet alone is inadequate for controlling blood glucose, insulin therapy should be considered.

Pediatric Use

Safety and effectiveness in pediatric patients have not been established.

Geriatric Use

Elderly patients are particularly susceptible to the hypoglycemic action of glucose lowering drugs. Hypoglycemia may be difficult to recognize in the elderly (see PRECAUTIONS). The initial and maintenance dosing should be conservative to avoid hypoglycemic reactions (see DOSAGE AND ADMINISTRATION).

Elderly patients are prone to develop renal insufficiency, which may put them at risk of hypoglycemia. Dose selection should include assessment of renal function.

ADVERSE REACTIONS

Hypoglycemia: See PRECAUTIONS and OVERDOSAGE Sections.

Gastrointestinal Reactions: Cholestatic jaundice and hepatitis may occur rarely which may progress to liver failure; GLYNASE PresTab Tablets should be discontinued if this occurs.

Liver function abnormalities, including isolated transaminase elevations, have been reported.

Gastrointestinal disturbances, eg, nausea, epigastric fullness, and heartburn are the most common reactions, having occurred in 1.8% of treated patients during clinical trials. They tend to be dose related and may disappear when dosage is reduced.

Dermatologic Reactions: Allergic skin reactions, eg, pruritus, erythema, urticaria, and morbilliform or maculopapular eruptions occurred in 1.5% of treated patients during clinical trials. These may be transient and may disappear despite continued use of glyburide. If skin reactions persist, the drug should be discontinued.

Porphyria cutanea tarda and photosensitivity reactions have been reported with sulfonylureas.

Hematologic Reactions: Leukopenia, agranulocytosis, thrombocytopenia, hemolytic anemia (see PRECAUTIONS), aplastic anemia, and pancytopenia have been reported with sulfonylureas.

Metabolic Reactions: Hepatic porphyria and disulfiram-like reactions have been reported with sulfonylureas; however, hepatic porphyria has not been reported with glyburide and disulfiram-like reactions have been reported very rarely.

Cases of hyponatremia have been reported with glyburide and all other sulfonylureas, most often in patients who are on other medications or have medical conditions known to cause hyponatremia or increase release of antidiuretic hormone. The syndrome of inappropriate antidiuretic hormone (SIADH) secretion has been reported with certain other sulfonylureas, and it has been suggested that these sulfonylureas may augment the peripheral (antidiuretic) action of ADH and/or increase release of ADH.

Other Reactions: Changes in accommodation and/or blurred vision have been reported with glyburide and other sulfonylureas. These are thought to be related to fluctuation in glucose levels.

In addition to dermatologic reactions, allergic reactions such as angioedema, arthralgia, myalgia and vasculitis have been reported.

INDICATIONS AND USAGE

GLYNASE PresTab Tablets are indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

GLYSET® (miglitol)

These highlights do not include all the information needed to use GLYSET safety and effectively. See full prescribing information for GLYSET.

CONTRAINDICATIONS

GLYSET Tablets are contraindicated in patients with:

  • Diabetic ketoacidosis
  • Inflammatory bowel disease, colonic ulceration, or partial intestinal obstruction, and in patients predisposed to intestinal obstruction
  • Chronic intestinal diseases associated with marked disorders of digestion or absorption, or with conditions that may deteriorate as a result of increased gas formation in the intestine
  • Hypersensitivity to the drug or any of its components.

PRECAUTIONS

Macrovascular Outcomes

There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with GLYSET or any other anti-diabetic drug.

General

Hypoglycemia

Because of its mechanism of action, GLYSET, when administered alone, should not cause hypoglycemia in the fasted or postprandial state. Sulfonylureas and insulin can cause hypoglycemia. Because GLYSET Tablets given in combination with a sulfonylurea or insulin will cause a further lowering of blood glucose, it may increase the hypoglycemic potential of the sulfonylurea or insulin. Consider reducing the dose of sulfonylureas or insulin when GLYSET is used in combination with these medications.

Oral glucose (dextrose), whose absorption is not delayed by GLYSET, should be used instead of sucrose (cane sugar) in the treatment of mild-to-moderate hypoglycemia. Sucrose, whose hydrolysis to glucose and fructose is inhibited by GLYSET, is unsuitable for the rapid correction of hypoglycemia. Severe hypoglycemia may require the use of either intravenous glucose infusion or glucagon injection.

Loss of Control of Blood Glucose

When diabetic patients are exposed to stress such as fever, trauma, infection, or surgery, a temporary loss of control of blood glucose may occur. At such times, temporary insulin therapy may be necessary.

Renal Impairment

Plasma concentrations of GLYSET in renally impaired volunteers were proportionally increased relative to the degree of renal dysfunction. Long-term clinical trials in diabetic patients with significant renal dysfunction (serum creatinine >2.0 mg/dL) have not been conducted. Therefore, treatment of these patients with GLYSET is not recommended.

Information for Patients

The following information should be provided to patients:

  • GLYSET should be taken orally three times a day at the start of each main meal. It is important to continue to adhere to dietary instructions, a regular exercise program, and regular testing of urine and/or blood glucose.
  • GLYSET itself does not cause hypoglycemia when administered to patients in the fasted state. Sulfonylurea drugs and insulin, however, can lower blood sugar levels and cause symptoms or life-threatening hypoglycemia. Because GLYSET given in combination with a sulfonylurea or insulin will cause a further lowering of blood sugar, it may increase the hypoglycemic potential of these agents. The risk of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be well understood by patients and responsible family members. Because GLYSET prevents the breakdown of table sugar, a source of glucose (dextrose, D-glucose) should be readily available to treat symptoms of low blood sugar when taking GLYSET in combination with a sulfonylurea or insulin.
  • If side effects occur with GLYSET, they usually develop during the first few weeks of therapy. They are most commonly mild-to-moderate dose-related gastrointestinal effects, such as flatulence, soft stools, diarrhea, or abdominal discomfort, and generally diminish in frequency and intensity with time. Discontinuation of drug usually results in rapid resolution of these gastrointestinal symptoms.

Physician Counseling Information for Patients

In initiating treatment for type 2 diabetes, diet should be emphasized as the primary form of treatment. Caloric restriction and weight loss are essential in the obese diabetic patient. Proper dietary management alone may be effective in controlling the blood glucose and symptoms of hyperglycemia. The importance of regular physical activity should also be stressed, and cardiovascular risk factors should be identified and corrective measures taken where possible. Use of GLYSET or other antidiabetic medications must be viewed by both the physician and patient as a treatment in addition to diet and not as a substitution or as a convenient mechanism for avoiding dietary restraint. Furthermore, loss of blood glucose control on diet alone may be transient, thus requiring only short-term administration of GLYSET or other antidiabetic medications. Maintenance or discontinuation of GLYSET or other antidiabetic medications should be based on clinical judgment using regular clinical and laboratory evaluations.

Laboratory Tests

Therapeutic response to GLYSET may be monitored by periodic blood glucose tests. Measurement of glycosylated hemoglobin levels is recommended for the monitoring of long-term glycemic control.

Drug Interactions

Several studies investigated the possible interaction between miglitol and glyburide. In six healthy volunteers given a single dose of 5 mg glyburide on a background of 6 days treatment with miglitol (50 mg 3 times daily for 4 days followed by 100 mg 3 times daily for 2 days) or placebo, the mean Cmax and AUC values for glyburide were 17% and 25% lower, respectively, when glyburide was given with miglitol. In a study in diabetic patients in which the effects of adding miglitol 100 mg 3 times daily for 7 days or placebo to a background regimen of 3.5 mg glyburide daily were investigated, the mean AUC value for glyburide was 18% lower in the group treated with miglitol, although this difference was not statistically significant. Information on a potential interaction with glyburide was obtained from one of the large U.S. clinical trials (Study 7) in which patients were dosed with either miglitol or placebo on a background of glyburide 10 mg twice daily. At the 6-month and 1-year clinic visits, patients taking concomitant miglitol 100 mg 3 times daily exhibited mean Cmax values for glyburide that were 16% and 8% lower, respectively, compared to patients taking glyburide alone. However, these differences were not statistically significant. Thus, although there was a trend toward lower AUC and Cmax values for glyburide when co-administered with GLYSET, no definitive statement regarding a potential interaction can be made based on the foregoing three studies.

The effect of miglitol (100 mg 3 times daily for 7 days) on the pharmacokinetics of a single 1000 mg dose of metformin was investigated in healthy volunteers. Mean AUC and Cmax values for metformin were 12% to 13% lower when the volunteers were given miglitol as compared with placebo, but this difference was not statistically significant.

In a study with healthy volunteers, co-administration of either 50 mg or 100 mg miglitol 3 times daily together with digoxin reduced the average plasma concentrations of digoxin by 19% and 28%, respectively. However, in diabetic patients under treatment with digoxin, plasma digoxin concentrations were not altered by co-administration of miglitol 100 mg 3 times daily for 14 days.

Other healthy volunteer studies have demonstrated that miglitol may significantly reduce the bioavailability of ranitidine and propranolol by 60% and 40%, respectively. No effect of miglitol was observed on the pharmacokinetics or pharmacodynamics of either warfarin or nifedipine.

Intestinal adsorbents (e.g., charcoal) and digestive enzyme preparations containing carbohydrate-splitting enzymes (e.g., amylase, pancreatin) may reduce the effect of GLYSET and should not be taken concomitantly.

In 12 healthy males, concomitantly administered antacid did not influence the pharmacokinetics of miglitol.

Carcinogenesis, Mutagenesis, and Impairment of Fertility

Miglitol was administered to mice by the dietary route at doses as high as approximately 500 mg/kg body weight (corresponding to greater than 5 times the exposure in humans based on AUC) for 21 months. In a two-year rat study, miglitol was administered in the diet at exposures comparable to the maximum human exposures based on AUC. There was no evidence of carcinogenicity resulting from dietary treatment with miglitol.

In vitro, miglitol was found to be nonmutagenic in the bacterial mutagenesis (Ames) assay and the eukaryotic forward mutation assay (CHO/HGPRT). Miglitol did not have any clastogenic effects in vivo in the mouse micronucleus test. There were no heritable mutations detected in dominant lethal assay.

A combined male and female fertility study conducted in Wistar rats treated orally with miglitol at dose levels of 300 mg/kg body weight (approximately 8 times the maximum human exposure based on body surface area) produced no untoward effect on reproductive performance or capability to reproduce. Survival, growth, development, and fertility of the offspring were not compromised.

Pregnancy

Teratogenic Effects

The safety of GLYSET in pregnant women has not been established. Developmental toxicology studies have been performed in rats at doses of 50, 150 and 450 mg/kg, corresponding to levels of approximately 1.5, 4, and 12 times the maximum recommended human exposure based on body surface area. In rabbits, doses of 10, 45, and 200 mg/kg corresponding to levels of approximately 0.5, 3, and 10 times the human exposure were examined. These studies revealed no evidence of fetal malformations attributable to miglitol. Doses of miglitol up to 4 and 3 times the human dose (based on body surface area), for rats and rabbits respectively, did not reveal evidence of impaired fertility or harm to the fetus. The highest doses tested in these studies, 450 mg/kg in the rat and 200 mg/kg in the rabbit promoted maternal and/or fetal toxicity. Fetotoxicity was indicated by a slight but significant reduction in fetal weight in the rat study and slight reduction in fetal weight, delayed ossification of the fetal skeleton and increase in the percentage of non-viable fetuses in the rabbit study. In the peri-postnatal study in rats, the NOAEL (No Observed Adverse Effect Level) was 100 mg/kg (corresponding to approximately four times the exposure to humans, based on body surface area). An increase in stillborn progeny was noted at the high dose (300 mg/kg) in the rat peri-postnatal study, but not at the high dose (450 mg/kg) in the delivery segment of the rat developmental toxicity study. Otherwise, there was no adverse effect on survival, growth, development, behavior, or fertility in either the rat developmental toxicity or peri-postnatal studies. There are however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, miglitol should be used during pregnancy only if clearly needed.

Nursing Mothers

Miglitol has been shown to be excreted in human milk to a very small degree. Total excretion into milk accounted for 0.02% of a 100 mg maternal dose. The estimated exposure to a nursing infant is approximately 0.4% of the maternal dose. Although the levels of miglitol reached in human milk are exceedingly low, it is recommended that GLYSET not be administered to a nursing woman.

Pediatric Use

Safety and effectiveness of GLYSET in pediatric patients have not been established.

Geriatric Use

Of the total number of subjects in clinical studies of GLYSET in the United States, patients valid for safety analyses included 24% over 65, and 3% over 75. No overall differences in safety and effectiveness were observed between these subjects and younger subjects. The pharmacokinetics of miglitol were studied in elderly and young males (n=8 per group). At the dosage of 100 mg 3 times daily for 3 days, no differences between the two groups were found.

ADVERSE REACTIONS

Gastrointestinal

Gastrointestinal symptoms are the most common reactions to GLYSET Tablets. In U.S. placebo-controlled trials, the incidences of abdominal pain, diarrhea, and flatulence were 11.7%, 28.7%, and 41.5% respectively in 962 patients treated with GLYSET 25 100 mg 3 times daily, whereas the corresponding incidences were 4.7%, 10.0%, and 12.0% in 603 placebo-treated patients. The incidence of diarrhea and abdominal pain tended to diminish with continued treatment.

Dermatologic

Skin rash was reported in 4.3% of patients treated with GLYSET compared to 2.4% of placebo-treated patients. Rashes were generally transient and most were assessed as unrelated to GLYSET by physician investigators.

Abnormal Laboratory Findings

Low serum iron occurred more often in patients treated with GLYSET (9.2%) than in placebo-treated patients (4.2%) but did not persist in the majority of cases and was not associated with reductions in hemoglobin or changes in other hematologic indices.

Postmarketing Experience

The following adverse reactions have been reported during post-approval use of GLYSET. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Gastrointestinal Disorders: ileus (including paralytic ileus), subileus, gastrointestinal pain, nausea, abdominal distention.

  • Pneumatosis Cystoides Intestinalis
    There have been rare postmarketing reports of pneumatosis cystoides intestinalis associated with the use of alpha-glucosidase inhibitors, including GLYSET. Pneumatosis cystoides intestinalis may present with symptoms of diarrhea, mucus discharge, rectal bleeding, and constipation. Complications may include pneumoperitoneum, volvulus, intestinal obstruction, intussusception, intestinal hemorrhage, and intestinal perforation. If pneumatosis cystoides intestinalis is suspected, discontinue Glyset and perform the appropriate diagnostic imaging.

INDICATIONS AND USAGE

GLYSET is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

LEVOXYL® (levothyroxine sodium)

These highlights do not include all the information needed to use LEVOXYL safety and effectively. See full prescribing information for LEVOXYL.

CONTRAINDICATIONS

Levothyroxine is contraindicated in patients with untreated subclinical (suppressed serum TSH level with normal T3 and T4 levels) or overt thyrotoxicosis of any etiology and in patients with acute myocardial infarction. Levothyroxine is contraindicated in patients with uncorrected adrenal insufficiency since thyroid hormones may precipitate an acute adrenal crisis by increasing the metabolic clearance of glucocorticoids (see PRECAUTIONS ). LEVOXYL is contraindicated in patients with hypersensitivity to any of the inactive ingredients in LEVOXYL tablets (see DESCRIPTION , Inactive Ingredients ).

WARNINGS

WARNING

Thyroid hormones, including LEVOXYL, either alone or with other therapeutic agents, should not be used for the treatment of obesity or for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects.

Levothyroxine sodium should not be used in the treatment of male or female infertility unless this condition is associated with hypothyroidism.

In patients with nontoxic diffuse goiter or nodular thyroid disease, particularly the elderly or those with underlying cardiovascular disease, levothyroxine sodium therapy is contraindicated if the serum TSH level is already suppressed due to the risk of precipitating overt thyrotoxicosis (see CONTRAINDICATIONS ). If the serum TSH level is not suppressed, LEVOXYL should be used with caution in conjunction with careful monitoring of thyroid function for evidence of hyperthyroidism and clinical monitoring for potential associated adverse cardiovascular signs and symptoms of hyperthyroidism.


PRECAUTIONS

General

Levothyroxine has a narrow therapeutic index. Regardless of the indication for use, careful dosage titration is necessary to avoid the consequences of over- or under-treatment. These consequences include, among others, effects on growth and development, cardiovascular function, bone metabolism, reproductive function, cognitive function, emotional state, gastrointestinal function, and on glucose and lipid metabolism. Many drugs interact with levothyroxine sodium necessitating adjustments in dosing to maintain therapeutic response (see Drug Interactions ).

Effects on bone mineral density

In women, long-term levothyroxine sodium therapy has been associated with decreased bone mineral density, especially in postmenopausal women on greater than replacement doses or in women who are receiving suppressive doses of levothyroxine sodium. Therefore, it is recommended that patients receiving levothyroxine sodium be given the minimum dose necessary to achieve the desired clinical and biochemical response.

Patients with underlying cardiovascular disease

Exercise caution when administering levothyroxine to patients with cardiovascular disorders and to the elderly in whom there is an increased risk of occult cardiac disease. In these patients, levothyroxine therapy should be initiated at lower doses than those recommended in younger individuals or in patients without cardiac disease (see WARNINGS ; PRECAUTIONS , Geriatric Use ; and DOSAGE AND ADMINISTRATION ). If cardiac symptoms develop or worsen, the levothyroxine dose should be reduced or withheld for one week and then cautiously restarted at a lower dose. Overtreatment with levothyroxine sodium may have adverse cardiovascular effects such as an increase in heart rate, cardiac wall thickness, and cardiac contractility and may precipitate angina or arrhythmias. Patients with coronary artery disease who are receiving levothyroxine therapy should be monitored closely during surgical procedures, since the possibility of precipitating cardiac arrhythmias may be greater in those treated with levothyroxine. Concomitant administration of levothyroxine and sympathomimetic agents to patients with coronary artery disease may precipitate coronary insufficiency.

Patients with nontoxic diffuse goiter or nodular thyroid disease

Exercise caution when administering levothyroxine to patients with nontoxic diffuse goiter or nodular thyroid disease in order to prevent precipitation of thyrotoxicosis (see WARNINGS ). If the serum TSH is already suppressed, levothyroxine sodium should not be administered (see CONTRAINDICATIONS ).

Associated endocrine disorders

Hypothalamic/pituitary hormone deficiencies

In patients with secondary or tertiary hypothyroidism, additional hypothalamic/pituitary hormone deficiencies should be considered, and, if diagnosed, treated (see PRECAUTIONS ,Autoimmune polyglandular syndrome ) for adrenal insufficiency.

Autoimmune polyglandular syndrome

Occasionally, chronic autoimmune thyroiditis may occur in association with other autoimmune disorders such as adrenal insufficiency, pernicious anemia, and insulin-dependent diabetes mellitus. Patients with concomitant adrenal insufficiency should be treated with replacement glucocorticoids prior to initiation of treatment with levothyroxine sodium. Failure to do so may precipitate an acute adrenal crisis when thyroid hormone therapy is initiated, due to increased metabolic clearance of glucocorticoids by thyroid hormone. Patients with diabetes mellitus may require upward adjustments of their antidiabetic therapeutic regimens when treated with levothyroxine (see PRECAUTIONS , Drug Interactions ).

Other associated medical conditions

Infants with congenital hypothyroidism appear to be at increased risk for other congenital anomalies, with cardiovascular anomalies (pulmonary stenosis, atrial septal defect, and ventricular septal defect,) being the most common association.

Information for Patients

Patients should be informed of the following information to aid in the safe and effective use of LEVOXYL:

  1. Notify your physician if you are allergic to any foods or medicines, are pregnant or intend to become pregnant, are breast-feeding or are taking any other medications, including prescription and over-the-counter preparations.
  2. Notify your physician of any other medical conditions you may have, particularly heart disease, diabetes, clotting disorders, and adrenal or pituitary gland problems. Your dose of medications used to control these other conditions may need to be adjusted while you are taking LEVOXYL. If you have diabetes, monitor your blood and/or urinary glucose levels as directed by your physician and immediately report any changes to your physician. If you are taking anticoagulants (blood thinners), your clotting status should be checked frequently.
  3. Use LEVOXYL only as prescribed by your physician. Do not discontinue or change the amount you take or how often you take it, unless directed to do so by your physician.
  4. The levothyroxine in LEVOXYL is intended to replace a hormone that is normally produced by your thyroid gland. Generally, replacement therapy is to be taken for life, except in cases of transient hypothyroidism, which is usually associated with an inflammation of the thyroid gland (thyroiditis).
  5. Take LEVOXYL in the morning on an empty stomach, at least one-half hour before eating any food.
  6. LEVOXYL may rapidly swell and disintegrate resulting in choking, gagging, the tablet getting stuck in your throat or difficulty swallowing. It is very important that you take the tablet with a full glass of water. Most of these problems disappeared when Levoxyl tablets were taken with water.
  7. It may take several weeks before you notice an improvement in your symptoms.
  8. Notify your physician if you experience any of the following symptoms: rapid or irregular heartbeat, chest pain, shortness of breath, leg cramps, headache, nervousness, irritability, sleeplessness, tremors, change in appetite, weight gain or loss, vomiting, diarrhea, excessive sweating, heat intolerance, fever, changes in menstrual periods, hives or skin rash, or any other unusual medical event.
  9. Notify your physician if you become pregnant while taking LEVOXYL. It is likely that your dose of LEVOXYL will need to be increased while you are pregnant.
  10. Notify your physician or dentist that you are taking LEVOXYL prior to any surgery.
  11. Partial hair loss may occur rarely during the first few months of LEVOXYL therapy, but this is usually temporary.
  12. LEVOXYL should not be used as a primary or adjunctive therapy in a weight control program.
  13. Keep LEVOXYL out of the reach of children. Store LEVOXYL away from heat, moisture, and light.

Laboratory Tests

General

The diagnosis of hypothyroidism is confirmed by measuring TSH levels using a sensitive assay (second generation assay sensitivity ≤0.1 mIU/L or third generation assay sensitivity ≤0.01 mIU/L) and measurement of free-T4.

The adequacy of therapy is determined by periodic assessment of appropriate laboratory tests and clinical evaluation. The choice of laboratory tests depends on various factors including the etiology of the underlying thyroid disease, the presence of concomitant medical conditions, including pregnancy, and the use of concomitant medications (see PRECAUTIONS , Drug Interactions and Drug-Laboratory Test Interactions). Persistent clinical and laboratory evidence of hypothyroidism despite an apparent adequate replacement dose of LEVOXYL may be evidence of inadequate absorption, poor compliance, drug interactions, or decreased T4 potency of the drug product.

Adults

In adult patients with primary (thyroidal) hypothyroidism, serum TSH levels (using a sensitive assay) alone may be used to monitor therapy. The frequency of TSH monitoring during levothyroxine dose titration depends on the clinical situation but it is generally recommended at 6—8 week intervals until normalization. For patients who have recently initiated levothyroxine therapy and whose serum TSH has normalized or in patients who have had their dosage or brand of levothyroxine changed, the serum TSH concentration should be measured after 8—12 weeks. When the optimum replacement dose has been attained, clinical (physical examination) and biochemical monitoring may be performed every 6—12 months, depending on the clinical situation, and whenever there is a change in the patient's status. It is recommended that a physical examination and a serum TSH measurement be performed at least annually in patients receiving LEVOXYL (see WARNINGS , PRECAUTIONS , and DOSAGE AND ADMINISTRATION ).

Pediatrics

In patients with congenital hypothyroidism, the adequacy of replacement therapy should be assessed by measuring both serum TSH (using a sensitive assay) and total- or free- T4. During the first three years of life, the serum total- or free- T4 should be maintained at all times in the upper half of the normal range. While the aim of therapy is to also normalize the serum TSH level, this is not always possible in a small percentage of patients, particularly in the first few months of therapy. TSH may not normalize due to a resetting of the pituitary-thyroid feedback threshold as a result of in utero hypothyroidism. Failure of the serum T4 to increase into the upper half of the normal range within 2 weeks of initiation of LEVOXYL therapy and/or of the serum TSH to decrease below 20 mU/L within 4 weeks should alert the physician to the possibility that the child is not receiving adequate therapy. Careful inquiry should then be made regarding compliance, dose of medication administered, and method of administration prior to raising the dose of LEVOXYL.

The recommended frequency of monitoring of TSH and total or free T4 in children is as follows: at 2 and 4 weeks after the initiation of treatment; every 1—2 months during the first year of life; every 2—3 months between 1 and 3 years of age; and every 3 to 12 months thereafter until growth is completed. More frequent intervals of monitoring may be necessary if poor compliance is suspected or abnormal values are obtained. It is recommended that TSH and T4 levels, and a physical examination, if indicated, be performed 2 weeks after any change in LEVOXYL dosage. Routine clinical examination, including assessment of mental and physical growth and development, and bone maturation, should be performed at regular intervals (see PRECAUTIONS , Pediatric Use and DOSAGE AND ADMINISTRATION ).

Secondary (pituitary) and tertiary (hypothalamic) hypothyroidism

Adequacy of therapy should be assessed by measuring serum free-T4 levels ,which should be maintained in the upper half of the normal range in these patients.

Drug Interactions

Many drugs affect thyroid hormone pharmacokinetics and metabolism (e.g., absorption, synthesis, secretion, catabolism, protein binding, and target tissue response) and may alter the therapeutic response to LEVOXYL. In addition, thyroid hormones and thyroid status have varied effects on the pharmacokinetics and action of other drugs. A listing of drug-thyroidal axis interactions is contained in Table 2.

The list of drug-thyroidal axis interactions in Table 2 may not be comprehensive due to the introduction of new drugs that interact with the thyroidal axis or the discovery of previously unknown interactions. The prescriber should be aware of this fact and should consult appropriate reference sources. (e.g., package inserts of newly approved drugs, medical literature) for additional information if a drug-drug interaction with levothyroxine is suspected.

Table 2: Drug — Thyroidal Axis Interactions
Drug or Drug Class Effect
Drugs that may reduce TSH secretion -the reduction is not sustained; therefore, hypothyroidism does not occur
Dopamine / Dopamine
Agonists Glucocorticoids
Octreotide
Use of these agents may result in a transient reduction in TSH secretion when administered at the following doses: Dopamine (≥1 mcg/kg/min); Glucocorticoids (hydrocortisone ≥100 mg/day or equivalent); Octreotide (>100 mcg/day).
Drugs that alter thyroid hormone secretion
Drugs that may decrease thyroid hormone secretion, which may result in hypothyroidism
Aminoglutethimide
Amiodarone
Iodide (including iodine-containing Radiographic contrast agents)
Lithium
Methimazole
Propylthiouracil (PTU)
Sulfonamides
Tolbutamide
Long-term lithium therapy can result in goiter in up to 50% of patients, and either subclinical or overt hypothyroidism, each in up to 20% of patients. The fetus, neonate, elderly and euthyroid patients with underlying thyroid disease (e.g., Hashimoto's thyroiditis or with Grave's disease previously treated with radioiodine or surgery) are among those individuals who are particularly susceptible to iodine-induced hypothyroidism. Oral cholecystographic agents and amiodarone are slowly excreted, producing more prolonged hypothyroidism than parenterally administered iodinated contrast agents. Long-term aminoglutethimide therapy may minimally decrease T4 and T3 levels and increase TSH, although all values remain within normal limits in most patients.
Drugs that may increase thyroid hormone secretion, which may result in hyperthyroidism
Amiodarone
Iodide (including iodine-containing Radiographic contrast agents)
Iodide and drugs that contain pharmacologic amounts of iodide may cause hyperthyroidism in euthyroid patients with Grave's disease previously treated with antithyroid drugs or in euthyroid patients with thyroid autonomy (e.g., multinodular goiter or hyperfunctioning thyroid adenoma). Hyperthyroidism may develop over several weeks and may persist for several months after therapy discontinuation. Amiodarone may induce hyperthyroidism by causing thyroiditis.
Drugs that may decrease T4 absorption, which may result in hypothyroidism
Antacids
- Aluminum & Magnesium Hydroxides
- Simethicone
Bile Acid Sequestrants
- Cholestyramine
- Colestipol
Calcium Carbonate
Cation Exchange Resins
- Kayexalate
Ferrous Sulfate
Orlistat
Sucralfate
Concurrent use may reduce the efficacy of levothyroxine by binding and delaying or preventing absorption, potentially resulting in hypothyroidism. Calcium carbonate may form an insoluble chelate with levothyroxine, and ferrous sulfate likely forms a ferric-thyroxine complex. Administer levothyroxine at least 4 hours apart from these agents. Patients treated concomitantly with orlistat and levothyroxine should be monitored for changes in thyroid function.
Drugs that may alter T4 and T3 serum transport — but FT4 concentration remains normal; and, therefore, the patient remains euthyroid
Drugs that may increase serum TBG concentration Drugs that may decrease serum TBG concentration
Clofibrate
Estrogen-containing oral contraceptives
Estrogens (oral)
Heroin / Methadone
5-Fluorouracil
Mitotane
Tamoxifen
Androgens / Anabolic Steroids
Asparaginase
Glucocorticoids
Slow-Release Nicotinic Acid
Drugs that may cause protein-binding site displacement
Furosemide ( > 80 mg IV)
Heparin
Hydantoins
Non Steroidal Anti-Inflammatory Drugs
- Fenamates
- Phenylbutazone
Salicylates ( > 2 g/day)
Administration of these agents with levothyroxine results in an initial transient increase in FT4. Continued administration results in a decrease in serum T4 and normal FT4 and TSH concentrations and, therefore, patients are clinically euthyroid. Salicylates inhibit binding of T4 and T3 to TBG and transthyretin. An initial increase in serum FT4 is followed by return of FT4 to normal levels with sustained therapeutic serum salicylate concentrations, although total-T4 levels may decrease by as much as 30%.
Drugs that may alter T4 and T3 metabolism
Drugs that may increase hepatic metabolism, which may result in hypothyroidism
Carbamazepine
Hydantoins
Phenobarbital
Rifampin
Stimulation of hepatic microsomal drug-metabolizing enzyme activity may cause increased hepatic degradation of levothyroxine, resulting in increased levothyroxine requirements. Phenytoin and carbamazepine reduce serum protein binding of levothyroxine, and total- and free-T4 may be reduced by 20% to 40%, but most patients have normal serum TSH levels and are clinically euthyroid.
Drugs that may decrease T4 5'-deiodinase activity
Amiodarone
Beta-adrenergic antagonists
- (e.g., Propranolol > 160 mg/day)
Glucocorticoids
- (e.g., Dexamethasone > 4 mg/day)
Propylthiouracil (PTU)
Administration of these enzyme inhibitors decreases the peripheral conversion of T4 to T3, leading to decreased T3 levels. However, serum T4 levels are usually normal but may occasionally be slightly increased. In patients treated with large doses of propranolol (>160 mg/day), T3 and T4 levels change slightly, TSH levels remain normal, and patients are clinically euthyroid. It should be noted that actions of particular beta-adrenergic antagonists may be impaired when the hypothyroid patient is converted to the euthyroid state. Short-term administration of large doses of glucocorticoids may decrease serum T3 concentrations by 30% with minimal change in serum T4 levels. However, long-term glucocorticoid therapy may result in slightly decreased T3 and T4 levels due to decreased TBG production (see above).
Miscellaneous
Anticoagulants (oral)
- Coumarin Derivatives
- Indandione Derivatives
Thyroid hormones appear to increase the catabolism of vitamin K-dependent clotting factors, thereby increasing the anticoagulant activity of oral anticoagulants. Concomitant use of these agents impairs the compensatory increases in clotting factor synthesis. Prothrombin time should be carefully monitored in patients taking levothyroxine and oral anticoagulants and the dose of anticoagulant therapy adjusted accordingly.
Antidepressants
- Tricyclics (e.g., Amitriptyline)
- Tetracyclics (e.g., Maprotiline)
- Selective Serotonin Reuptake Inhibitors (SSRIs; e.g., Sertraline)
Concurrent use of tri/tetracyclic antidepressants and levothyroxine may increase the therapeutic and toxic effects of both drugs, possibly due to increased receptor sensitivity to catecholamines. Toxic effects may include increased risk of cardiac arrhythmias and CNS stimulation; onset of action of tricyclics may be accelerated. Administration of sertraline in patients stabilized on levothyroxine may result in increased levothyroxine requirements.
Antidiabetic Agents
- Biguanides
- Meglitinides
- Sulfonylureas
- Thiazolidediones
- Insulin
Addition of levothyroxine to antidiabetic or insulin therapy may result in increased antidiabetic agent or insulin requirements. Careful monitoring of diabetic control is recommended, especially when thyroid therapy is started, changed, or discontinued.
Cardiac Glycosides Serum digitalis glycoside levels may be reduced in hyperthyroidism or when the hypothyroid patient is converted to the euthyroid state. Therapeutic effect of digitalis glycosides may be reduced.
Cytokines
- Interferon-α
- Interleukin-2
Therapy with interferon-α has been associated with the development of antithyroid microsomal antibodies in 20% of patients and some have transient hypothyroidism, hyperthyroidism, or both. Patients who have antithyroid antibodies before treatment are at higher risk for thyroid dysfunction during treatment. Interleukin-2 has been associated with transient painless thyroiditis in 20% of patients. Interferon-β and -γ have not been reported to cause thyroid dysfunction.
Growth Hormones
- Somatrem
- Somatropin
Excessive use of thyroid hormones with growth hormones may accelerate epiphyseal closure. However, untreated hypothyroidism may interfere with growth response to growth hormone.
Ketamine Concurrent use may produce marked hypertension and tachycardia; cautious administration to patients receiving thyroid hormone therapy is recommended.
Methylxanthine Bronchodilators
- (e.g., Theophylline)
Decreased theophylline clearance may occur in hypothyroid patients; clearance returns to normal when the euthyroid state is achieved.
Radiographic Agents Thyroid hormones may reduce the uptake of 123I, 131I, and 99mTc.
Sympathomimetics Concurrent use may increase the effects of sympathomimetics or thyroid hormone. Thyroid hormones may increase the risk of coronary insufficiency when sympathomimetic agents are administered to patients with coronary artery disease.
Chloral Hydrate
Diazepam
Ethionamide
Lovastatin
Metoclopramide
6-Mercaptopurine
Nitroprusside
Para-aminosalicylate sodium
Perphenazine
Resorcinol (excessive topical use)
Thiazide Diuretics
These agents have been associated with thyroid hormone and / or TSH level alterations by various mechanisms.

Oral anticoagulants

Levothyroxine increases the response to oral anticoagulant therapy. Therefore, a decrease in the dose of anticoagulant may be warranted with correction of the hypothyroid state or when the LEVOXYL dose is increased. Prothrombin time should be closely monitored to permit appropriate and timely dosage adjustments (see Table 2).

Digitalis glycosides

The therapeutic effects of digitalis glycosides may be reduced by levothyroxine. Serum digitalis glycoside levels may be decreased when a hypothyroid patient becomes euthyroid, necessitating an increase in the dose of digitalis glycosides (see Table 2).

Drug-Food Interactions

Consumption of certain foods may affect levothyroxine absorption thereby necessitating adjustments in dosing. Soybean flour (infant formula), cotton seed meal, walnuts, and dietary fiber may bind and decrease the absorption of levothyroxine sodium from the GI tract.

Drug-Laboratory Test Interactions

Changes in TBG concentration must be considered when interpreting T4 and T3 values, which necessitates measurement and evaluation of unbound (free) hormone and/or determination of the free T4 index (FT4I). Pregnancy, infectious hepatitis, estrogens, estrogen-containing oral contraceptives, and acute intermittent porphyria increase TBG concentrations. Decreases in TBG concentrations are observed in nephrosis, severe hypoproteinemia, severe liver disease, acromegaly, and after androgen or corticosteroid therapy (see also Table 2). Familial hyper- or hypo-thyroxine binding globulinemias have been described, with the incidence of TBG deficiency approximating 1 in 9000.

Carcinogenesis, Mutagenesis, and Impairment of Fertility

Animal studies have not been performed to evaluate the carcinogenic potential, mutagenic potential or effects on fertility of levothyroxine. The synthetic T4 in LEVOXYL is identical to that produced naturally by the human thyroid gland. Although there has been a reported association between prolonged thyroid hormone therapy and breast cancer, this has not been confirmed. Patients receiving LEVOXYL for appropriate clinical indications should be titrated to the lowest effective replacement dose.

Pregnancy

Category A

Studies in women taking levothyroxine sodium during pregnancy have not shown an increased risk of congenital abnormalities. Therefore, the possibility of fetal harm appears remote. LEVOXYL should not be discontinued during pregnancy and hypothyroidism diagnosed during pregnancy should be promptly treated.

Hypothyroidism during pregnancy is associated with a higher rate of complications, including spontaneous abortion, pre-eclampsia, stillbirth and premature delivery. Maternal hypothyroidism may have an adverse effect on fetal and childhood growth and development. During pregnancy, serum T4 levels may decrease and serum TSH levels increase to values outside the normal range. Since elevations in serum TSH may occur as early as 4 weeks gestation, pregnant women taking LEVOXYL should have their TSH measured during each trimester. An elevated serum TSH level should be corrected by an increase in the dose of LEVOXYL. Since postpartum TSH levels are similar to preconception values, the LEVOXYL dosage should return to the pre-pregnancy dose immediately after delivery. A serum TSH level should be obtained 6—8 weeks postpartum.

Thyroid hormones do not readily cross the placental barrier; however, some transfer does occur as evidenced by levels in cord blood of athyreotic fetuses being approximately one-third maternal levels. Transfer of thyroid hormone from the mother to the fetus, however, may not be adequate to prevent in utero hypothyroidism.

Nursing Mothers

Although thyroid hormones are excreted only minimally in human milk, caution should be exercised when LEVOXYL is administered to a nursing woman. However, adequate replacement doses of levothyroxine are generally needed to maintain normal lactation.

Pediatric Use

General

The goal of treatment in pediatric patients with hypothyroidism is to achieve and maintain normal intellectual and physical growth and development.

The initial dose of levothyroxine varies with age and body weight (see DOSAGE AND ADMINISTRATION , Table 3). Dosing adjustments are based on an assessment of the individual patient's clinical and laboratory parameters (see PRECAUTIONS , Laboratory Tests ).

In children in whom a diagnosis of permanent hypothyroidism has not been established, it is recommended that levothyroxine administration be discontinued for a 30-day trial period, but only after the child is at least 3 years of age. Serum T4 and TSH levels should then be obtained. If the T4 is low and the TSH high, the diagnosis of permanent hypothyroidism is established, and levothyroxine therapy should be reinstituted. If the T4 and TSH levels are normal, euthyroidism may be assumed and, therefore, the hypothyroidism can be considered to have been transient. In this instance, however, the physician should carefully monitor the child and repeat the thyroid function tests if any signs or symptoms of hypothyroidism develop. In this setting, the clinician should have a high index of suspicion of relapse. If the results of the levothyroxine withdrawal test are inconclusive, careful follow-up and subsequent testing will be necessary.

Since some more severely affected children may become clinically hypothyroid when treatment is discontinued for 30 days, an alternate approach is to reduce the replacement dose of levothyroxine by half during the 30-day trial period. If, after 30 days, the serum TSH is elevated above 20 mU/L, the diagnosis of permanent hypothyroidism is confirmed, and full replacement therapy should be resumed. However, if the serum TSH has not risen to greater than 20mU/L, levothyroxine treatment should be discontinued for another 30-day trial period followed by repeat serum T4 and TSH.

The presence of concomitant medical conditions should be considered in certain clinical circumstances and, if present, appropriately treated (see PRECAUTIONS ).

Congenital Hypothyroidism

(see PRECAUTIONS , Laboratory Tests and DOSAGE AND ADMINISTRATION )

Rapid restoration of normal serum T4 concentrations is essential for preventing the adverse effects of congenital hypothyroidism on intellectual development as well as on overall physical growth and maturation. Therefore, LEVOXYL therapy should be initiated immediately upon diagnosis and is generally continued for life.

During the first 2 weeks of LEVOXYL therapy, infants should be closely monitored for cardiac overload, arrhythmias, and aspiration from avid suckling.

The patient should be monitored closely to avoid undertreatment or overtreatment. Undertreatment may have deleterious effects on intellectual development and linear growth. Overtreatment has been associated with craniosynostosis in infants, and may adversely affect the tempo of brain maturation and accelerate the bone age with resultant premature closure of the epiphyses and compromised adult stature.

Acquired Hypothyroidism in Pediatric Patients

The patient should be monitored closely to avoid undertreatment and overtreatment. Undertreatment may result in poor school performance due to impaired concentration and slowed mentation and in reduced adult height. Overtreatment may accelerate the bone age and result in premature epiphyseal closure and compromised adult stature.

Treated children may manifest a period of catch-up growth, which may be adequate in some cases to normalize adult height. In children with severe or prolonged hypothyroidism, catch-up growth may not be adequate to normalize adult height.

Geriatric Use

Because of the increased prevalence of cardiovascular disease among the elderly, levothyroxine therapy should not be initiated at the full replacement dose (see WARNINGS , PRECAUTIONS , and DOSAGE AND ADMINISTRATION ).

ADVERSE REACTIONS

Adverse reactions associated with levothyroxine therapy are primarily those of hyperthyroidism due to therapeutic overdosage. They include the following:

General: fatigue, increased appetite, weight loss, heat intolerance, fever, excessive sweating;

Central nervous system: headache, hyperactivity, nervousness, anxiety, irritability, emotional lability, insomnia;

Musculoskeletal: tremors, muscle weakness;

Cardiac: palpitations, tachycardia, arrhythmias, increased pulse and blood pressure, heart failure, angina, myocardial infarction, cardiac arrest;

Pulmonary: dyspnea;

GI: diarrhea, vomiting, abdominal cramps;

Dermatologic: hair loss, flushing;

Reproductive: menstrual irregularities, impaired fertility.

Pseudotumor cerebri and slipped capital femoral epiphysis have been reported in children receiving levothyroxine therapy. Overtreatment may result in craniosynostosis in infants and premature closure of the epiphyses in children with resultant compromised adult height.

Seizures have been reported rarely with the institution of levothyroxine therapy.

Inadequate levothyroxine dosage will produce or fail to ameliorate the signs and symptoms of hypothyroidism.

Hypersensitivity reactions to inactive ingredients have occurred in patients treated with thyroid hormone products. These include urticaria, pruritus, skin rash, flushing, angioedema, various GI symptoms (abdominal pain, nausea, vomiting and diarrhea), fever, arthralgia, serum sickness and wheezing. Hypersensitivity to levothyroxine itself is not known to occur.

In addition to the above events, the following have been reported, predominately when Levoxyl tablets were not taken with water: choking, gagging, tablet stuck in throat and dysphagia (see Information for Patients ).

INDICATIONS AND USAGE

Levothyroxine sodium is used for the following indications:

Hypothyroidism

As replacement or supplemental therapy in congenital or acquired hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. Specific indications include: primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) hypothyroidism and subclinical hypothyroidism. Primary hypothyroidism may result from functional deficiency, primary atrophy, partial or total congenital absence of the thyroid gland, or from the effects of surgery, radiation, or drugs, with or without the presence of goiter.

Pituitary TSH Suppression

In the treatment or prevention of various types of euthyroid goiters (see WARNINGS and PRECAUTIONS ), including thyroid nodules (see WARNINGS and PRECAUTIONS ), subacute or chronic lymphocytic thyroiditis (Hashimoto's thyroiditis), multinodular goiter (see WARNINGS and PRECAUTIONS ) and, as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer.

LIPITOR® (atorvastatin calcium)

These highlights do not include all the information needed to use LIPITOR safety and effectively. See full prescribing information for LIPITOR.

4 CONTRAINDICATIONS

4.1 Active liver disease, which may include unexplained persistent elevations in hepatic transaminase levels

4.2 Hypersensitivity to any component of this medication

4.3 Pregnancy

Women who are pregnant or may become pregnant. LIPITOR may cause fetal harm when administered to a pregnant woman. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. There are no adequate and well-controlled studies of LIPITOR use during pregnancy; however in rare reports, congenital anomalies were observed following intrauterine exposure to statins. In rat and rabbit animal reproduction studies, atorvastatin revealed no evidence of teratogenicity. LIPITOR SHOULD BE ADMINISTERED TO WOMEN OF CHILDBEARING AGE ONLY WHEN SUCH PATIENTS ARE HIGHLY UNLIKELY TO CONCEIVE AND HAVE BEEN INFORMED OF THE POTENTIAL HAZARDS. If the patient becomes pregnant while taking this drug, LIPITOR should be discontinued immediately and the patient apprised of the potential hazard to the fetus [see Use in Specific Populations (8.1)].

4.4 Nursing mothers

It is not known whether atorvastatin is excreted into human milk; however a small amount of another drug in this class does pass into breast milk. Because statins have the potential for serious adverse reactions in nursing infants, women who require LIPITOR treatment should not breastfeed their infants [see Use in Specific Populations (8.3)].

5 WARNINGS AND PRECAUTIONS

5.1 Skeletal Muscle

Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with LIPITOR and with other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects.

Atorvastatin, like other statins, occasionally causes myopathy, defined as muscle aches or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values >10 times ULN. The concomitant use of higher doses of atorvastatin with certain drugs such as cyclosporine and strong CYP3A4 inhibitors (e.g., clarithromycin, itraconazole, and HIV protease inhibitors) increases the risk of myopathy/rhabdomyolysis.

There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents.

Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, and/or marked elevation of CPK. Patients should be advised to report promptly unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing LIPITOR. LIPITOR therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected.

The risk of myopathy during treatment with drugs in this class is increased with concurrent administration of cyclosporine, fibric acid derivatives, erythromycin, clarithromycin, the hepatitis C protease inhibitor telaprevir, combinations of HIV protease inhibitors, including saquinavir plus ritonavir, lopinavir plus ritonavir, tipranavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, and fosamprenavir plus ritonavir, niacin, or azole antifungals. Physicians considering combined therapy with LIPITOR and fibric acid derivatives, erythromycin, clarithromycin, a combination of saquinavir plus ritonavir, lopinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, azole antifungals, or lipid-modifying doses of niacin should carefully weigh the potential benefits and risks and should carefully monitor patients for any signs or symptoms of muscle pain, tenderness, or weakness, particularly during the initial months of therapy and during any periods of upward dosage titration of either drug. Lower starting and maintenance doses of atorvastatin should be considered when taken concomitantly with the aforementioned drugs (see Drug Interactions (7)). Periodic creatine phosphokinase (CPK) determinations may be considered in such situations, but there is no assurance that such monitoring will prevent the occurrence of severe myopathy.

Prescribing recommendations for interacting agents are summarized in Table 1 [see also Dosage and Administration (2.6), Drug Interactions (7), Clinical Pharmacology (12.3)].

Table 1. Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis
Interacting Agents Prescribing Recommendations
*
Use with caution and with the lowest dose necessary (12.3)
Cyclosporine, HIV protease inhibitors (tipranavir plus ritonavir), hepatitis C protease inhibitor (telaprevir)
Avoid atorvastatin
HIV protease inhibitor (lopinavir plus ritonavir)
Use with caution and lowest dose necessary
Clarithromycin, itraconazole, HIV protease inhibitors (saquinavir plus ritonavir*, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir) Do not exceed 20 mg atorvastatin daily
HIV protease inhibitor (nelfinavir)
Hepatitis C protease inhibitor (boceprevir)
Do not exceed 40 mg atorvastatin daily

Cases of myopathy, including rhabdomyolysis, have been reported with atorvastatin co-administered with colchicine, and caution should be exercised when prescribing atorvastatin with colchicine [see Drug Interactions (7.11)].

LIPITOR therapy should be temporarily withheld or discontinued in any patient with an acute, serious condition suggestive of a myopathy or having a risk factor predisposing to the development of renal failure secondary to rhabdomyolysis (e.g., severe acute infection, hypotension, major surgery, trauma, severe metabolic, endocrine and electrolyte disorders, and uncontrolled seizures).

5.2 Liver Dysfunction

Statins, like some other lipid-lowering therapies, have been associated with biochemical abnormalities of liver function. Persistent elevations (>3 times the upper limit of normal [ULN] occurring on 2 or more occasions) in serum transaminases occurred in 0.7% of patients who received LIPITOR in clinical trials. The incidence of these abnormalities was 0.2%, 0.2%, 0.6%, and 2.3% for 10, 20, 40, and 80 mg, respectively.

One patient in clinical trials developed jaundice. Increases in liver function tests (LFT) in other patients were not associated with jaundice or other clinical signs or symptoms. Upon dose reduction, drug interruption, or discontinuation, transaminase levels returned to or near pretreatment levels without sequelae. Eighteen of 30 patients with persistent LFT elevations continued treatment with a reduced dose of LIPITOR.

It is recommended that liver enzyme tests be obtained prior to initiating therapy with LIPITOR and repeated as clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including atorvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with LIPITOR, promptly interrupt therapy. If an alternate etiology is not found, do not restart LIPITOR.

LIPITOR should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of liver disease. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of LIPITOR [see Contraindications (4.1)].

5.3 Endocrine Function

Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including LIPITOR.

Statins interfere with cholesterol synthesis and theoretically might blunt adrenal and/or gonadal steroid production. Clinical studies have shown that LIPITOR does not reduce basal plasma cortisol concentration or impair adrenal reserve. The effects of statins on male fertility have not been studied in adequate numbers of patients. The effects, if any, on the pituitary-gonadal axis in premenopausal women are unknown. Caution should be exercised if a statin is administered concomitantly with drugs that may decrease the levels or activity of endogenous steroid hormones, such as ketoconazole, spironolactone, and cimetidine.

5.4 CNS Toxicity

Brain hemorrhage was seen in a female dog treated for 3 months at 120 mg/kg/day. Brain hemorrhage and optic nerve vacuolation were seen in another female dog that was sacrificed in moribund condition after 11 weeks of escalating doses up to 280 mg/kg/day. The 120 mg/kg dose resulted in a systemic exposure approximately 16 times the human plasma area-under-the-curve (AUC, 0–24 hours) based on the maximum human dose of 80 mg/day. A single tonic convulsion was seen in each of 2 male dogs (one treated at 10 mg/kg/day and one at 120 mg/kg/day) in a 2-year study. No CNS lesions have been observed in mice after chronic treatment for up to 2 years at doses up to 400 mg/kg/day or in rats at doses up to 100 mg/kg/day. These doses were 6 to 11 times (mouse) and 8 to 16 times (rat) the human AUC (0–24) based on the maximum recommended human dose of 80 mg/day.

CNS vascular lesions, characterized by perivascular hemorrhages, edema, and mononuclear cell infiltration of perivascular spaces, have been observed in dogs treated with other members of this class. A chemically similar drug in this class produced optic nerve degeneration (Wallerian degeneration of retinogeniculate fibers) in clinically normal dogs in a dose-dependent fashion at a dose that produced plasma drug levels about 30 times higher than the mean drug level in humans taking the highest recommended dose.

5.5 Use in Patients with Recent Stroke or TIA

In a post-hoc analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study where LIPITOR 80 mg vs. placebo was administered in 4,731 subjects without CHD who had a stroke or TIA within the preceding 6 months, a higher incidence of hemorrhagic stroke was seen in the LIPITOR 80 mg group compared to placebo (55, 2.3% atorvastatin vs. 33, 1.4% placebo; HR: 1.68, 95% CI: 1.09, 2.59; p=0.0168). The incidence of fatal hemorrhagic stroke was similar across treatment groups (17 vs. 18 for the atorvastatin and placebo groups, respectively). The incidence of nonfatal hemorrhagic stroke was significantly higher in the atorvastatin group (38, 1.6%) as compared to the placebo group (16, 0.7%). Some baseline characteristics, including hemorrhagic and lacunar stroke on study entry, were associated with a higher incidence of hemorrhagic stroke in the atorvastatin group [see Adverse Reactions (6.1)].

6 ADVERSE REACTIONS

The following serious adverse reactions are discussed in greater detail in other sections of the label:

Rhabdomyolysis and myopathy [see Warnings and Precautions (5.1)]

Liver enzyme abnormalities [see Warnings and Precautions (5.2)]

6.1 Clinical Trial Adverse Experiences

Because clinical trials are conducted under widely varying conditions, the adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

In the LIPITOR placebo-controlled clinical trial database of 16,066 patients (8755 LIPITOR vs. 7311 placebo; age range 10–93 years, 39% women, 91% Caucasians, 3% Blacks, 2% Asians, 4% other) with a median treatment duration of 53 weeks, 9.7% of patients on LIPITOR and 9.5% of the patients on placebo discontinued due to adverse reactions regardless of causality. The five most common adverse reactions in patients treated with LIPITOR that led to treatment discontinuation and occurred at a rate greater than placebo were: myalgia (0.7%), diarrhea (0.5%), nausea (0.4%), alanine aminotransferase increase (0.4%), and hepatic enzyme increase (0.4%).

The most commonly reported adverse reactions (incidence ≥ 2% and greater than placebo) regardless of causality, in patients treated with LIPITOR in placebo controlled trials (n=8755) were: nasopharyngitis (8.3%), arthralgia (6.9%), diarrhea (6.8%), pain in extremity (6.0%), and urinary tract infection (5.7%).

Table 2 summarizes the frequency of clinical adverse reactions, regardless of causality, reported in ≥ 2% and at a rate greater than placebo in patients treated with LIPITOR (n=8755), from seventeen placebo-controlled trials.

Table 2. Clinical adverse reactions occurring in ≥ 2% in patents treated with any dose of LIPITOR and at an incidence greater than placebo regardless of causality (% of patients).
Adverse Reaction* Any dose
N=8755
10 mg
N=3908
20 mg
N=188
40 mg
N=604
80 mg
N=4055
Placebo
N=7311
*
Adverse Reaction ≥ 2% in any dose greater than placebo
Nasopharyngitis 8.3 12.9 5.3 7.0 4.2 8.2
Arthralgia 6.9 8.9 11.7 10.6 4.3 6.5
Diarrhea 6.8 7.3 6.4 14.1 5.2 6.3
Pain in extremity 6.0 8.5 3.7 9.3 3.1 5.9
Urinary tract infection 5.7 6.9 6.4 8.0 4.1 5.6
Dyspepsia 4.7 5.9 3.2 6.0 3.3 4.3
Nausea 4.0 3.7 3.7 7.1 3.8 3.5
Musculoskeletal pain 3.8 5.2 3.2 5.1 2.3 3.6
Muscle Spasms 3.6 4.6 4.8 5.1 2.4 3.0
Myalgia 3.5 3.6 5.9 8.4 2.7 3.1
Insomnia 3.0 2.8 1.1 5.3 2.8 2.9
Pharyngolaryngeal pain 2.3 3.9 1.6 2.8 0.7 2.1

Other adverse reactions reported in placebo-controlled studies include:

Body as a whole: malaise, pyrexia; Digestive system: abdominal discomfort, eructation, flatulence, hepatitis, cholestasis; Musculoskeletal system: musculoskeletal pain, muscle fatigue, neck pain, joint swelling; Metabolic and nutritional system: transaminases increase, liver function test abnormal, blood alkaline phosphatase increase, creatine phosphokinase increase, hyperglycemia; Nervous system: nightmare; Respiratory system: epistaxis; Skin and appendages: urticaria; Special senses: vision blurred, tinnitus; Urogenital system: white blood cells urine positive.

Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)

In ASCOT [see Clinical Studies (14.1)] involving 10,305 participants (age range 40–80 years, 19% women; 94.6% Caucasians, 2.6% Africans, 1.5% South Asians, 1.3% mixed/other) treated with LIPITOR 10 mg daily (n=5,168) or placebo (n=5,137), the safety and tolerability profile of the group treated with LIPITOR was comparable to that of the group treated with placebo during a median of 3.3 years of follow-up.

Collaborative Atorvastatin Diabetes Study (CARDS)

In CARDS [see Clinical Studies (14.1)] involving 2,838 subjects (age range 39–77 years, 32% women; 94.3% Caucasians, 2.4% South Asians, 2.3% Afro-Caribbean, 1.0% other) with type 2 diabetes treated with LIPITOR 10 mg daily (n=1,428) or placebo (n=1,410), there was no difference in the overall frequency of adverse reactions or serious adverse reactions between the treatment groups during a median follow-up of 3.9 years. No cases of rhabdomyolysis were reported.

Treating to New Targets Study (TNT)

In TNT [see Clinical Studies (14.1)] involving 10,001 subjects (age range 29–78 years, 19% women; 94.1% Caucasians, 2.9% Blacks, 1.0% Asians, 2.0% other) with clinically evident CHD treated with LIPITOR 10 mg daily (n=5006) or LIPITOR 80 mg daily (n=4995), there were more serious adverse reactions and discontinuations due to adverse reactions in the high-dose atorvastatin group (92, 1.8%; 497, 9.9%, respectively) as compared to the low-dose group (69, 1.4%; 404, 8.1%, respectively) during a median follow-up of 4.9 years. Persistent transaminase elevations (≥3 × ULN twice within 4–10 days) occurred in 62 (1.3%) individuals with atorvastatin 80 mg and in nine (0.2%) individuals with atorvastatin 10 mg. Elevations of CK (≥ 10 × ULN) were low overall, but were higher in the high-dose atorvastatin treatment group (13, 0.3%) compared to the low-dose atorvastatin group (6, 0.1%).

Incremental Decrease in Endpoints through Aggressive Lipid Lowering Study (IDEAL)

In IDEAL [see Clinical Studies (14.1)] involving 8,888 subjects (age range 26–80 years, 19% women; 99.3% Caucasians, 0.4% Asians, 0.3% Blacks, 0.04% other) treated with LIPITOR 80 mg/day (n=4439) or simvastatin 20–40 mg daily (n=4449), there was no difference in the overall frequency of adverse reactions or serious adverse reactions between the treatment groups during a median follow-up of 4.8 years.

Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL)

In SPARCL involving 4731 subjects (age range 21–92 years, 40% women; 93.3% Caucasians, 3.0% Blacks, 0.6% Asians, 3.1% other) without clinically evident CHD but with a stroke or transient ischemic attack (TIA) within the previous 6 months treated with LIPITOR 80 mg (n=2365) or placebo (n=2366) for a median follow-up of 4.9 years, there was a higher incidence of persistent hepatic transaminase elevations (≥ 3 × ULN twice within 4–10 days) in the atorvastatin group (0.9%) compared to placebo (0.1%). Elevations of CK (>10 × ULN) were rare, but were higher in the atorvastatin group (0.1%) compared to placebo (0.0%). Diabetes was reported as an adverse reaction in 144 subjects (6.1%) in the atorvastatin group and 89 subjects (3.8%) in the placebo group [see Warnings and Precautions (5.5)].

In a post-hoc analysis, LIPITOR 80 mg reduced the incidence of ischemic stroke (218/2365, 9.2% vs. 274/2366, 11.6%) and increased the incidence of hemorrhagic stroke (55/2365, 2.3% vs. 33/2366, 1.4%) compared to placebo. The incidence of fatal hemorrhagic stroke was similar between groups (17 LIPITOR vs. 18 placebo). The incidence of non-fatal hemorrhagic strokes was significantly greater in the atorvastatin group (38 non-fatal hemorrhagic strokes) as compared to the placebo group (16 non-fatal hemorrhagic strokes). Subjects who entered the study with a hemorrhagic stroke appeared to be at increased risk for hemorrhagic stroke [7 (16%) LIPITOR vs. 2 (4%) placebo].

There were no significant differences between the treatment groups for all-cause mortality: 216 (9.1%) in the LIPITOR 80 mg/day group vs. 211 (8.9%) in the placebo group. The proportions of subjects who experienced cardiovascular death were numerically smaller in the LIPITOR 80 mg group (3.3%) than in the placebo group (4.1%). The proportions of subjects who experienced non-cardiovascular death were numerically larger in the LIPITOR 80 mg group (5.0%) than in the placebo group (4.0%).

6.2 Postmarketing Experience

The following adverse reactions have been identified during postapproval use of LIPITOR. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Adverse reactions associated with LIPITOR therapy reported since market introduction, that are not listed above, regardless of causality assessment, include the following: anaphylaxis, angioneurotic edema, bullous rashes (including erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis), rhabdomyolysis, myositis, fatigue, tendon rupture, fatal and non-fatal hepatic failure, dizziness, depression, peripheral neuropathy, and pancreatitis.

There have been rare reports of immune-mediated necrotizing myopathy associated with statin use [see Warnings and Precautions (5.1)].

There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).

6.3 Pediatric Patients (ages 10–17 years)

In a 26-week controlled study in boys and postmenarchal girls (n=140, 31% female; 92% Caucasians, 1.6% Blacks, 1.6% Asians, 4.8% other), the safety and tolerability profile of LIPITOR 10 to 20 mg daily was generally similar to that of placebo [see Clinical Studies (14.6) and Use in Special Populations, Pediatric Use (8.4)].

1 INDICATIONS AND USAGE

Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is recommended as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. In patients with CHD or multiple risk factors for CHD, LIPITOR can be started simultaneously with diet.

1.1 Prevention of Cardiovascular Disease

In adult patients without clinically evident coronary heart disease, but with multiple risk factors for coronary heart disease such as age, smoking, hypertension, low HDL-C, or a family history of early coronary heart disease, LIPITOR is indicated to:

  • Reduce the risk of myocardial infarction
  • Reduce the risk of stroke
  • Reduce the risk for revascularization procedures and angina

In patients with type 2 diabetes, and without clinically evident coronary heart disease, but with multiple risk factors for coronary heart disease such as retinopathy, albuminuria, smoking, or hypertension, LIPITOR is indicated to:

  • Reduce the risk of myocardial infarction
  • Reduce the risk of stroke

In patients with clinically evident coronary heart disease, LIPITOR is indicated to:

  • Reduce the risk of non-fatal myocardial infarction
  • Reduce the risk of fatal and non-fatal stroke
  • Reduce the risk for revascularization procedures
  • Reduce the risk of hospitalization for CHF
  • Reduce the risk of angina

1.2 Hyperlipidemia

LIPITOR is indicated:

  • As an adjunct to diet to reduce elevated total-C, LDL-C, apo B, and TG levels and to increase HDL-C in patients with primary hypercholesterolemia (heterozygous familial and nonfamilial) and mixed dyslipidemia (Fredrickson Types IIa and IIb);
  • As an adjunct to diet for the treatment of patients with elevated serum TG levels (Fredrickson Type IV);
  • For the treatment of patients with primary dysbetalipoproteinemia (Fredrickson Type III) who do not respond adequately to diet;
  • To reduce total-C and LDL-C in patients with homozygous familial hypercholesterolemia as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) or if such treatments are unavailable;
  • As an adjunct to diet to reduce total-C, LDL-C, and apo B levels in boys and postmenarchal girls, 10 to 17 years of age, with heterozygous familial hypercholesterolemia if after an adequate trial of diet therapy the following findings are present:
    1. LDL-C remains ≥ 190 mg/dL or
    2. LDL-C remains ≥ 160 mg/dL and:
      • there is a positive family history of premature cardiovascular disease or
      • two or more other CVD risk factors are present in the pediatric patient

1.3 Limitations of Use

LIPITOR has not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V).

LOPID® (gemfibrozil)

These highlights do not include all the information needed to use LOPID safety and effectively. See full prescribing information for LOPID.

CONTRAINDICATIONS

  1. Hepatic or severe renal dysfunction, including primary biliary cirrhosis.
  2. Preexisting gallbladder disease (see WARNINGS).
  3. Hypersensitivity to gemfibrozil.
  4. Combination therapy of gemfibrozil with simvastatin (see WARNINGS and PRECAUTIONS).
  5. Combination therapy of gemfibrozil with repaglinide (see PRECAUTIONS).
  6. Combination therapy of gemfibrozil with dasabuvir (see PRECAUTIONS).

WARNINGS

1. Because of chemical, pharmacological, and clinical similarities between gemfibrozil and clofibrate, the adverse findings with clofibrate in two large clinical studies may also apply to gemfibrozil. In the first of those studies, the Coronary Drug Project, 1000 subjects with previous myocardial infarction were treated for five years with clofibrate. There was no difference in mortality between the clofibrate-treated subjects and 3000 placebo-treated subjects, but twice as many clofibrate-treated subjects developed cholelithiasis and cholecystitis requiring surgery. In the other study, conducted by the World Health Organization (WHO), 5000 subjects without known coronary heart disease were treated with clofibrate for five years and followed one year beyond. There was a statistically significant (44%) higher age-adjusted total mortality in the clofibrate-treated group than in a comparable placebo-treated control group during the trial period. The excess mortality was due to a 33% increase in non-cardiovascular causes, including malignancy, post-cholecystectomy complications, and pancreatitis. The higher risk of clofibrate-treated subjects for gallbladder disease was confirmed.

Because of the more limited size of the Helsinki Heart Study, the observed difference in mortality from any cause between the LOPID and placebo groups is not statistically significantly different from the 29% excess mortality reported in the clofibrate group in the separate WHO study at the nine year follow-up (see CLINICAL PHARMACOLOGY). Noncoronary heart disease related mortality showed an excess in the group originally randomized to LOPID primarily due to cancer deaths observed during the open-label extension.

During the five year primary prevention component of the Helsinki Heart Study, mortality from any cause was 44 (2.2%) in the LOPID group and 43 (2.1%) in the placebo group; including the 3.5 year follow-up period since the trial was completed, cumulative mortality from any cause was 101 (4.9%) in the LOPID group and 83 (4.1%) in the group originally randomized to placebo (hazard ratio 1:20 in favor of placebo). Because of the more limited size of the Helsinki Heart Study, the observed difference in mortality from any cause between the LOPID and placebo groups at Year-5 or at Year-8.5 is not statistically significantly different from the 29% excess mortality reported in the clofibrate group in the separate WHO study at the nine year follow-up. Noncoronary heart disease related mortality showed an excess in the group originally randomized to LOPID at the 8.5 year follow-up (65 LOPID versus 45 placebo noncoronary deaths).

The incidence of cancer (excluding basal cell carcinoma) discovered during the trial and in the 3.5 years after the trial was completed was 51 (2.5%) in both originally randomized groups. In addition, there were 16 basal cell carcinomas in the group originally randomized to LOPID and 9 in the group originally randomized to placebo (p=0.22). There were 30 (1.5%) deaths attributed to cancer in the group originally randomized to LOPID and 18 (0.9%) in the group originally randomized to placebo (p=0.11). Adverse outcomes, including coronary events, were higher in gemfibrozil patients in a corresponding study in men with a history of known or suspected coronary heart disease in the secondary prevention component of the Helsinki Heart Study (see CLINICAL PHARMACOLOGY).

A comparative carcinogenicity study was also done in rats comparing three drugs in this class: fenofibrate (10 and 60 mg/kg; 0.3 and 1.6 times the human dose, respectively), clofibrate (400 mg/kg; 1.6 times the human dose), and gemfibrozil (250 mg/kg; 1.7 times the human dose). Pancreatic acinar adenomas were increased in males and females on fenofibrate; hepatocellular carcinoma and pancreatic acinar adenomas were increased in males and hepatic neoplastic nodules in females treated with clofibrate; hepatic neoplastic nodules were increased in males and females treated with clofibrate; hepatic neoplastic nodules were increased in males and females treated with gemfibrozil while testicular interstitial cell (Leydig cell) tumors were increased in males on all three drugs.

2. A gallstone prevalence substudy of 450 Helsinki Heart Study participants showed a trend toward a greater prevalence of gallstones during the study within the LOPID treatment group (7.5% versus 4.9% for the placebo group, a 55% excess for the gemfibrozil group). A trend toward a greater incidence of gallbladder surgery was observed for the LOPID group (17 versus 11 subjects, a 54% excess). This result did not differ statistically from the increased incidence of cholecystectomy observed in the WHO study in the group treated with clofibrate. Both clofibrate and gemfibrozil may increase cholesterol excretion into the bile, leading to cholelithiasis. If cholelithiasis is suspected, gallbladder studies are indicated. LOPID therapy should be discontinued if gallstones are found. Cases of cholelithiasis have been reported with gemfibrozil therapy.

3. Since a reduction of mortality from coronary heart disease has not been demonstrated and because liver and interstitial cell testicular tumors were increased in rats, LOPID should be administered only to those patients described in the INDICATIONS AND USAGE section. If a significant serum lipid response is not obtained, LOPID should be discontinued.

4. Concomitant Anticoagulants – Caution should be exercised when warfarin is given in conjunction with LOPID. The dosage of warfarin should be reduced to maintain the prothrombin time at the desired level to prevent bleeding complications. Frequent prothrombin determinations are advisable until it has been definitely determined that the prothrombin level has stabilized.

5. The concomitant administration of LOPID with simvastatin is contraindicated (see CONTRAINDICATIONS and PRECAUTIONS). Concomitant therapy with LOPID and an HMG-CoA reductase inhibitor is associated with an increased risk of skeletal muscle toxicity manifested as rhabdomyolysis, markedly elevated creatine kinase (CPK) levels, and myoglobinuria, leading in a high proportion of cases to acute renal failure and death. IN PATIENTS WHO HAVE HAD AN UNSATISFACTORY LIPID RESPONSE TO EITHER DRUG ALONE, THE BENEFIT OF COMBINED THERAPY WITH LOPID AND an HMG-CoA REDUCTASE INHIBITOR DOES NOT OUTWEIGH THE RISKS OF SEVERE MYOPATHY, RHABDOMYOLYSIS, AND ACUTE RENAL FAILURE (see PRECAUTIONS, Drug Interactions). The use of fibrates alone, including LOPID, may occasionally be associated with myositis. Patients receiving LOPID and complaining of muscle pain, tenderness, or weakness should have prompt medical evaluation for myositis, including serum creatine–kinase level determination. If myositis is suspected or diagnosed, LOPID therapy should be withdrawn.

6. Cataracts – Subcapsular bilateral cataracts occurred in 10%, and unilateral in 6.3%, of male rats treated with gemfibrozil at 10 times the human dose.

7. CYP2C8 substrates - Gemfibrozil, a strong inhibitor of CYP2C8, may increase exposure of CYP2C8 substrates when administered concomitantly (see PRECAUTIONS, Drug Interactions).

8. OATP1B1 substrates – Gemfibrozil is an inhibitor of organic anion-transporter polyprotein (OATP) 1B1 and may increase exposure of drugs that are substrates of OATP1B1 (e.g., atrasentan, atorvastatin, bosentan, ezetimibe, fluvastatin, glyburide, SN-38 [active metabolite of irinotecan], rosuvastatin, pitavastatin, pravastatin, rifampin, valsartan, olmesartan). Therefore, dosing reductions of drugs that are substrates of OATP1B1 may be required when gemfibrozil is used concomitantly (see PRECAUTIONS, Drug Interactions). Combination therapy of gemfibrozil with simvastatin or with repaglinide, which are OATP1B1 substrates, is contraindicated (see CONTRAINDICATIONS).


PRECAUTIONS

1. Initial Therapy

Laboratory studies should be done to ascertain that the lipid levels are consistently abnormal. Before instituting LOPID therapy, every attempt should be made to control serum lipids with appropriate diet, exercise, weight loss in obese patients, and control of any medical problems such as diabetes mellitus and hypothyroidism that are contributing to the lipid abnormalities.

2. Continued Therapy

Periodic determination of serum lipids should be obtained, and the drug withdrawn if lipid response is inadequate after three months of therapy.

3. Drug Interactions

(A) HMG-CoA Reductase Inhibitors

The concomitant administration of LOPID with simvastatin is contraindicated (see CONTRAINDICATIONS and WARNINGS). The risk of myopathy and rhabdomyolysis is increased with combined gemfibrozil and HMG-CoA reductase inhibitor therapy. Myopathy or rhabdomyolysis with or without acute renal failure have been reported as early as three weeks after initiation of combined therapy or after several months (see WARNINGS). There is no assurance that periodic monitoring of creatine kinase will prevent the occurrence of severe myopathy and kidney damage.

(B) Anticoagulants

CAUTION SHOULD BE EXERCISED WHEN WARFARIN IS GIVEN IN CONJUNCTION WITH LOPID. THE DOSAGE OF WARFARIN SHOULD BE REDUCED TO MAINTAIN THE PROTHROMBIN TIME AT THE DESIRED LEVEL TO PREVENT BLEEDING COMPLICATIONS. FREQUENT PROTHROMBIN DETERMINATIONS ARE ADVISABLE UNTIL IT HAS BEEN DEFINITELY DETERMINED THAT THE PROTHROMBIN LEVEL HAS STABILIZED.

(C) CYP2C8 Substrates

Gemfibrozil is a strong inhibitor of CYP2C8 and may increase exposure of drugs mainly metabolized by CYP2C8 (e.g., dabrafenib, enzalutamide, loperamide, montelukast, paclitaxel, pioglitazone, rosiglitazone). Therefore, dosing reduction of drugs that are mainly metabolized by CYP2C8 enzyme may be required when gemfibrozil is used concomitantly (see WARNINGS).

Repaglinide

In healthy volunteers, co-administration with gemfibrozil (600 mg twice daily for 3 days) resulted in an 8.1-fold (range 5.5- to 15.0- fold) higher repaglinide AUC and a 28.6-fold (range 18.5- to 80.1-fold) higher repaglinide plasma concentration 7 hours after the dose. In the same study, gemfibrozil (600 mg twice daily for 3 days) + itraconazole (200 mg in the morning and 100 mg in the evening at Day 1, then 100 mg twice daily at Day 2–3) resulted in a 19.4- (range 12.9- to 24.7-fold) higher repaglinide AUC and a 70.4-fold (range 42.9- to 119.2-fold) higher repaglinide plasma concentration 7 hours after the dose. In addition, gemfibrozil alone or gemfibrozil + itraconazole prolonged the hypoglycemic effects of repaglinide. Co-administration of gemfibrozil and repaglinide increases the risk of severe hypoglycemia and is contraindicated (see CONTRAINDICATIONS).

Dasabuvir

Co-administration of gemfibrozil with dasabuvir increased dasabuvir AUC and Cmax (ratios: 11.3 and 2.01, respectively) due to CYP2C8 inhibition. Increased dasabuvir exposure may increase the risk of QT prolongation, therefore, co-administration of gemfibrozil with dasabuvir is contraindicated (see CONTRAINDICATIONS).

Enzalutamide

In healthy volunteers given a single 160 mg dose of enzalutamide after gemfibrozil 600 mg twice daily, the AUC of enzalutamide plus active metabolite (N-desmethyl enzalutamide) was increased by 2.2 fold and corresponding Cmax was decreased by 16%. Increased enzalutamide exposure may increase the risk of seizures. If co-administration is considered necessary, the dose of enzalutamide should be reduced (see WARNINGS).

(D) OATP1B1 substrates

Gemfibrozil is an inhibitor of OATP1B1 transporter and may increase exposure of drugs that are substrates of OATP1B1 (e.g., atrasentan, atorvastatin, bosentan, ezetimibe, fluvastatin, glyburide, SN-38 [active metabolite of irinotecan], rosuvastatin, pitavastatin, pravastatin, rifampin, valsartan, olmesartan). Therefore, dosing reductions of drugs that are substrates of OATP1B1 may be required when gemfibrozil is used concomitantly (see WARNINGS). Combination therapy of gemfibrozil with simvastatin or with repaglinide, which are OATP1B1 substrates, is contraindicated (see CONTRAINDICATIONS).

(E) In vitro studies of CYP enzymes, UGTA enzymes and OATP1B1 transporter

In vitro studies have shown that gemfibrozil is an inhibitor of CYP1A2, CYP2C8, CYP2C9, CYP2C19, OATP1B1, and UDP-glucuronosyltransferase (UGT) 1A1 and 1A3 (see WARNINGS).

(F) Bile Acid-Binding Resins

Gemfibrozil AUC was reduced by 30% when gemfibrozil was given (600 mg) simultaneously with resin-granule drugs such as colestipol (5 g). Administration of the drugs two hours or more apart is recommended because gemfibrozil exposure was not significantly affected when it was administered two hours apart from colestipol.

(G) Colchicine

Myopathy, including rhabdomyolysis, has been reported with chronic administration of colchicine at therapeutic doses. Concomitant use of LOPID may potentiate the development of myopathy. Patients with renal dysfunction and elderly patients are at increased risk. Caution should be exercised when prescribing LOPID with colchicine, especially in elderly patients or patients with renal dysfunction.

4. Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term studies have been conducted in rats at 0.2 and 1.3 times the human exposure (based on AUC). The incidence of benign liver nodules and liver carcinomas was significantly increased in high dose male rats. The incidence of liver carcinomas increased also in low dose males, but this increase was not statistically significant (p=0.1). Male rats had a dose-related and statistically significant increase of benign Leydig cell tumors. The higher dose female rats had a significant increase in the combined incidence of benign and malignant liver neoplasms.

Long-term studies have been conducted in mice at 0.1 and 0.7 times the human exposure (based on AUC). There were no statistically significant differences from controls in the incidence of liver tumors, but the doses tested were lower than those shown to be carcinogenic with other fibrates.

Electron microscopy studies have demonstrated a florid hepatic peroxisome proliferation following LOPID administration to the male rat. An adequate study to test for peroxisome proliferation has not been done in humans but changes in peroxisome morphology have been observed. Peroxisome proliferation has been shown to occur in humans with either of two other drugs of the fibrate class when liver biopsies were compared before and after treatment in the same individual.

Administration of approximately 2 times the human dose (based on surface area) to male rats for 10 weeks resulted in a dose-related decrease of fertility. Subsequent studies demonstrated that this effect was reversed after a drug-free period of about eight weeks, and it was not transmitted to the offspring.

5. Pregnancy Category C

LOPID has been shown to produce adverse effects in rats and rabbits at doses between 0.5 and 3 times the human dose (based on surface area). There are no adequate and well-controlled studies in pregnant women. LOPID should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Administration of LOPID to female rats at 2 times the human dose (based on surface area) before and throughout gestation caused a dose-related decrease in conception rate, an increase in stillborns, and a slight reduction in pup weight during lactation. There were also dose-related increased skeletal variations. Anophthalmia occurred, but rarely.

Administration of 0.6 and 2 times the human dose (based on surface area) of LOPID to female rats from gestation day 15 through weaning caused dose-related decreases in birth weight and suppressions of pup growth during lactation.

Administration of 1 and 3 times the human dose (based on surface area) of LOPID to female rabbits during organogenesis caused a dose-related decrease in litter size and, at the high dose, an increased incidence of parietal bone variations.

6. Nursing Mothers

It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for tumorigenicity shown for LOPID in animal studies, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

7. Hematologic Changes

Mild hemoglobin, hematocrit, and white blood cell decreases have been observed in occasional patients following initiation of LOPID therapy. However, these levels stabilize during long-term administration. Rarely, severe anemia, leukopenia, thrombocytopenia, and bone marrow hypoplasia have been reported. Therefore, periodic blood counts are recommended during the first 12 months of LOPID administration.

8. Liver Function

Abnormal liver function tests have been observed occasionally during LOPID administration, including elevations of AST, ALT, LDH, bilirubin, and alkaline phosphatase. These are usually reversible when LOPID is discontinued. Therefore, periodic liver function studies are recommended and LOPID therapy should be terminated if abnormalities persist.

9. Kidney Function

There have been reports of worsening renal insufficiency upon the addition of LOPID therapy in individuals with baseline plasma creatinine >2.0 mg/dL. In such patients, the use of alternative therapy should be considered against the risks and benefits of a lower dose of LOPID.

10. Pediatric Use

Safety and efficacy in pediatric patients have not been established.

ADVERSE REACTIONS

In the double-blind controlled phase of the primary prevention component of the Helsinki Heart Study, 2046 patients received LOPID for up to five years. In that study, the following adverse reactions were statistically more frequent in subjects in the LOPID group:

LOPID
(N = 2046)
PLACEBO
(N = 2035)
Frequency in
percent of subjects
Gastrointestinal reactions 34.2 23.8
  Dyspepsia 19.6 11.9
  Abdominal pain   9.8   5.6
  Acute appendicitis   1.2   0.6
    (histologically confirmed in most cases
    where data were available)
Atrial fibrillation   0.7   0.1
Adverse events reported by more than 1% of subjects, but without a significant difference between groups:
Diarrhea   7.2   6.5
Fatigue   3.8   3.5
Nausea/Vomiting   2.5   2.1
Eczema   1.9   1.2
Rash   1.7   1.3
Vertigo   1.5   1.3
Constipation   1.4   1.3
Headache   1.2   1.1

Gallbladder surgery was performed in 0.9% of LOPID and 0.5% of placebo subjects in the primary prevention component, a 64% excess, which is not statistically different from the excess of gallbladder surgery observed in the clofibrate group compared to the placebo group of the WHO study. Gallbladder surgery was also performed more frequently in the LOPID group compared to the placebo group (1.9% versus 0.3%, p=0.07) in the secondary prevention component. A statistically significant increase in appendectomy in the gemfibrozil group was seen also in the secondary prevention component (6 on gemfibrozil versus 0 on placebo, p=0.014).

Nervous system and special senses adverse reactions were more common in the LOPID group. These included hypesthesia, paresthesias, and taste perversion. Other adverse reactions that were more common among LOPID treatment group subjects but where a causal relationship was not established include cataracts, peripheral vascular disease, and intracerebral hemorrhage.

From other studies it seems probable that LOPID is causally related to the occurrence of MUSCULOSKELETAL SYMPTOMS (see WARNINGS), and to ABNORMAL LIVER FUNCTION TESTS and HEMATOLOGIC CHANGES (see PRECAUTIONS).

Reports of viral and bacterial infections (common cold, cough, urinary tract infections) were more common in gemfibrozil treated patients in other controlled clinical trials of 805 patients. Additional adverse reactions that have been reported for gemfibrozil are listed below by system. These are categorized according to whether a causal relationship to treatment with LOPID is probable or not established:

CAUSAL RELATIONSHIP
PROBABLE
CAUSAL RELATIONSHIP
NOT ESTABLISHED
General:
Cardiac:
weight loss
extrasystoles
Gastrointestinal: cholestatic jaundice pancreatitis
hepatoma
colitis
Central Nervous
  System: dizziness
somnolence
paresthesia
peripheral neuritis
decreased libido
depression
headache
confusion
convulsions
syncope
Eye: blurred vision retinal edema
Genitourinary: impotence decreased male fertility
renal dysfunction
Musculoskeletal: myopathy
myasthenia
myalgia
painful extremities
arthralgia
synovitis
rhabdomyolysis (see
  WARNINGS and
  Drug Interactions under
   PRECAUTIONS)
Clinical
  Laboratory: increased creatine
  phosphokinase
increased bilirubin
increased liver
  transaminases
  (AST, ALT)
increased alkaline
  phosphatase
positive antinuclear
  antibody
Hematopoietic: anemia
leukopenia
bone marrow hypoplasia
eosinophilia
thrombocytopenia
Immunologic: angioedema
laryngeal edema
urticaria
anaphylaxis
Lupus-like syndrome
vasculitis
Integumentary: exfoliative dermatitis
rash
dermatitis
pruritus
alopecia
photosensitivity

Additional adverse reactions that have been reported include cholecystitis and cholelithiasis (see WARNINGS).

INDICATIONS AND USAGE

LOPID (gemfibrozil tablets, USP) is indicated as adjunctive therapy to diet for:

  1. Treatment of adult patients with very high elevations of serum triglyceride levels (Types IV and V hyperlipidemia) who present a risk of pancreatitis and who do not respond adequately to a determined dietary effort to control them. Patients who present such risk typically have serum triglycerides over 2000 mg/dL and have elevations of VLDL-cholesterol as well as fasting chylomicrons (Type V hyperlipidemia). Subjects who consistently have total serum or plasma triglycerides below 1000 mg/dL are unlikely to present a risk of pancreatitis. LOPID therapy may be considered for those subjects with triglyceride elevations between 1000 and 2000 mg/dL who have a history of pancreatitis or of recurrent abdominal pain typical of pancreatitis. It is recognized that some Type IV patients with triglycerides under 1000 mg/dL may, through dietary or alcoholic indiscretion, convert to a Type V pattern with massive triglyceride elevations accompanying fasting chylomicronemia, but the influence of LOPID therapy on the risk of pancreatitis in such situations has not been adequately studied. Drug therapy is not indicated for patients with Type I hyperlipoproteinemia, who have elevations of chylomicrons and plasma triglycerides, but who have normal levels of very low density lipoprotein (VLDL). Inspection of plasma refrigerated for 14 hours is helpful in distinguishing Types I, IV, and V hyperlipoproteinemia.
  2. Reducing the risk of developing coronary heart disease only in Type IIb patients without history of or symptoms of existing coronary heart disease who have had an inadequate response to weight loss, dietary therapy, exercise, and other pharmacologic agents (such as bile acid sequestrants and nicotinic acid, known to reduce LDL- and raise HDL-cholesterol) and who have the following triad of lipid abnormalities: low HDL-cholesterol levels in addition to elevated LDL-cholesterol and elevated triglycerides (see WARNINGS, PRECAUTIONS, and CLINICAL PHARMACOLOGY). The National Cholesterol Education Program has defined a serum HDL-cholesterol value that is consistently below 35 mg/dL as constituting an independent risk factor for coronary heart disease. Patients with significantly elevated triglycerides should be closely observed when treated with gemfibrozil. In some patients with high triglyceride levels, treatment with gemfibrozil is associated with a significant increase in LDL-cholesterol. BECAUSE OF POTENTIAL TOXICITY SUCH AS MALIGNANCY, GALLBLADDER DISEASE, ABDOMINAL PAIN LEADING TO APPENDECTOMY AND OTHER ABDOMINAL SURGERIES, AN INCREASED INCIDENCE IN NON-CORONARY MORTALITY, AND THE 44% RELATIVE INCREASE DURING THE TRIAL PERIOD IN AGE-ADJUSTED ALL-CAUSE MORTALITY SEEN WITH THE CHEMICALLY AND PHARMACOLOGICALLY RELATED DRUG, CLOFIBRATE, THE POTENTIAL BENEFIT OF GEMFIBROZIL IN TREATING TYPE IIA PATIENTS WITH ELEVATIONS OF LDL-CHOLESTEROL ONLY IS NOT LIKELY TO OUTWEIGH THE RISKS. LOPID IS ALSO NOT INDICATED FOR THE TREATMENT OF PATIENTS WITH LOW HDL-CHOLESTEROL AS THEIR ONLY LIPID ABNORMALITY.

In a subgroup analysis of patients in the Helsinki Heart Study with above-median HDL-cholesterol values at baseline (greater than 46.4 mg/dL), the incidence of serious coronary events was similar for gemfibrozil and placebo subgroups (see Table I).

The initial treatment for dyslipidemia is dietary therapy specific for the type of lipoprotein abnormality. Excess body weight and excess alcohol intake may be important factors in hypertriglyceridemia and should be managed prior to any drug therapy. Physical exercise can be an important ancillary measure, and has been associated with rises in HDL-cholesterol. Diseases contributory to hyperlipidemia such as hypothyroidism or diabetes mellitus should be looked for and adequately treated. Estrogen therapy is sometimes associated with massive rises in plasma triglycerides, especially in subjects with familial hypertriglyceridemia. In such cases, discontinuation of estrogen therapy may obviate the need for specific drug therapy of hypertriglyceridemia. The use of drugs should be considered only when reasonable attempts have been made to obtain satisfactory results with nondrug methods. If the decision is made to use drugs, the patient should be instructed that this does not reduce the importance of adhering to diet.

MINIPRESS® (prazosin HCl)

These highlights do not include all the information needed to use MINIPRESS safety and effectively. See full prescribing information for MINIPRESS.

CONTRAINDICATIONS

MINIPRESS is contraindicated in patients with known sensitivity to quinazolines, prazosin, or any of the inert ingredients.

WARNINGS

As with all alpha-blockers, MINIPRESS may cause syncope with sudden loss of consciousness. In most cases, this is believed to be due to an excessive postural hypotensive effect, although occasionally the syncopal episode has been preceded by a bout of severe tachycardia with heart rates of 120–160 beats per minute. Syncopal episodes have usually occurred within 30 to 90 minutes of the initial dose of the drug; occasionally, they have been reported in association with rapid dosage increases or the introduction of another antihypertensive drug into the regimen of a patient taking high doses of MINIPRESS. The incidence of syncopal episodes is approximately 1% in patients given an initial dose of 2 mg or greater. Clinical trials conducted during the investigational phase of this drug suggest that syncopal episodes can be minimized by limiting the initial dose of the drug to 1 mg, by subsequently increasing the dosage slowly, and by introducing any additional antihypertensive drugs into the patient's regimen with caution (see DOSAGE AND ADMINISTRATION). Hypotension may develop in patients given MINIPRESS who are also receiving a beta-blocker such as propranolol.

If syncope occurs, the patient should be placed in the recumbent position and treated supportively as necessary. This adverse effect is self-limiting and in most cases does not recur after the initial period of therapy or during subsequent dose titration.

Patients should always be started on the 1 mg capsules of MINIPRESS. The 2 and 5 mg capsules are not indicated for initial therapy.

More common than loss of consciousness are the symptoms often associated with lowering of the blood pressure, namely, dizziness and lightheadedness. The patient should be cautioned about these possible adverse effects and advised what measures to take should they develop. The patient should also be cautioned to avoid situations where injury could result should syncope occur during the initiation of MINIPRESS therapy.

Priapism

Prolonged erections and priapism have been reported with alpha-1 blockers including prazosin in post marketing experience. In the event of an erection that persists longer than 4 hours, seek immediate medical assistance. If priapism is not treated immediately, penile tissue damage and permanent loss of potency could result.


PRECAUTIONS

General

Intraoperative Floppy Iris Syndrome (IFIS) has been observed during cataract surgery in some patients treated with alpha-1 blockers. This variant of small pupil syndrome is characterized by the combination of a flaccid iris that billows in response to intraoperative irrigation currents, progressive intraoperative miosis despite preoperative dilation with standard mydriatic drugs, and potential prolapse of the iris toward the phacoemulsification incisions. The patient's ophthalmologist should be prepared for possible modifications to the surgical technique, such as the utilization of iris hooks, iris dilator rings, or viscoelastic substances. There does not appear to be a benefit of stopping alpha-1 blocker therapy prior to cataract surgery.

Information for Patients

Dizziness or drowsiness may occur after the first dose of this medicine. Avoid driving or performing hazardous tasks for the first 24 hours after taking this medicine or when the dose is increased. Dizziness, lightheadedness, or fainting may occur, especially when rising from a lying or sitting position. Getting up slowly may help lessen the problem. These effects may also occur if you drink alcohol, stand for long periods of time, exercise, or if the weather is hot. While taking MINIPRESS, be careful in the amount of alcohol you drink. Also, use extra care during exercise or hot weather, or if standing for long periods. Check with your physician if you have any questions.

Drug Interactions

MINIPRESS has been administered without any adverse drug interaction in limited clinical experience to date with the following: (1) cardiac glycosides–digitalis and digoxin; (2) hypoglycemics–insulin, chlorpropamide, phenformin, tolazamide, and tolbutamide; (3) tranquilizers and sedatives–chlordiazepoxide, diazepam, and phenobarbital; (4) antigout–allopurinol, colchicine, and probenecid; (5) antiarrhythmics–procainamide, propranolol (see WARNINGS however), and quinidine; and (6) analgesics, antipyretics and anti-inflammatories–propoxyphene, aspirin, indomethacin, and phenylbutazone.

Addition of a diuretic or other antihypertensive agent to MINIPRESS has been shown to cause an additive hypotensive effect. This effect can be minimized by reducing the MINIPRESS dose to 1 to 2 mg three times a day, by introducing additional antihypertensive drugs cautiously, and then by retitrating MINIPRESS based on clinical response.

Concomitant administration of MINIPRESS with a phosphodiesterase-5 (PDE-5) inhibitor can result in additive blood pressure lowering effects and symptomatic hypotension (see DOSAGE AND ADMINISTRATION).

Drug/Laboratory Test Interactions

In a study on five patients given from 12 to 24 mg of prazosin per day for 10 to 14 days, there was an average increase of 42% in the urinary metabolite of norepinephrine and an average increase in urinary VMA of 17%. Therefore, false positive results may occur in screening tests for pheochromocytoma in patients who are being treated with prazosin. If an elevated VMA is found, prazosin should be discontinued and the patient retested after a month.

Laboratory Tests

In clinical studies in which lipid profiles were followed, there were generally no adverse changes noted between pre- and post-treatment lipid levels.

Carcinogenesis, Mutagenesis, Impairment of Fertility

No carcinogenic potential was demonstrated in an 18 month study in rats with MINIPRESS at dose levels more than 225 times the usual maximum recommended human dose of 20 mg per day. MINIPRESS was not mutagenic in in vivo genetic toxicology studies. In a fertility and general reproductive performance study in rats, both males and females, treated with 75 mg/kg (225 times the usual maximum recommended human dose), demonstrated decreased fertility, while those treated with 25 mg/kg (75 times the usual maximum recommended human dose) did not.

In chronic studies (one year or more) of MINIPRESS in rats and dogs, testicular changes consisting of atrophy and necrosis occurred at 25 mg/kg/day (75 times the usual maximum recommended human dose). No testicular changes were seen in rats or dogs at 10 mg/kg/day (30 times the usual maximum recommended human dose). In view of the testicular changes observed in animals, 105 patients on long term MINIPRESS therapy were monitored for 17-ketosteroid excretion and no changes indicating a drug effect were observed. In addition, 27 males on MINIPRESS for up to 51 months did not have changes in sperm morphology suggestive of drug effect.

Usage in Pregnancy

MINIPRESS has been shown to be associated with decreased litter size at birth, 1, 4, and 21 days of age in rats when given doses more than 225 times the usual maximum recommended human dose. No evidence of drug-related external, visceral, or skeletal fetal abnormalities were observed. No drug-related external, visceral, or skeletal abnormalities were observed in fetuses of pregnant rabbits and pregnant monkeys at doses more than 225 times and 12 times the usual maximum recommended human dose, respectively.

The use of prazosin and a beta-blocker for the control of severe hypertension in 44 pregnant women revealed no drug-related fetal abnormalities or adverse effects. Therapy with prazosin was continued for as long as 14 weeks.1

Prazosin has also been used alone or in combination with other hypotensive agents in severe hypertension of pregnancy by other investigators. No fetal or neonatal abnormalities have been reported with the use of prazosin.2

There are no adequate and well controlled studies which establish the safety of MINIPRESS in pregnant women. MINIPRESS should be used during pregnancy only if the potential benefit justifies the potential risk to the mother and fetus.

Nursing Mothers

MINIPRESS has been shown to be excreted in small amounts in human milk. Caution should be exercised when MINIPRESS is administered to a nursing woman.

Usage in Children

Safety and effectiveness in children have not been established.

ADVERSE REACTIONS

Clinical trials were conducted on more than 900 patients. During these trials and subsequent marketing experience, the most frequent reactions associated with MINIPRESS therapy are: dizziness 10.3%, headache 7.8%, drowsiness 7.6%, lack of energy 6.9%, weakness 6.5%, palpitations 5.3%, and nausea 4.9%. In most instances, side effects have disappeared with continued therapy or have been tolerated with no decrease in dose of drug.

Less frequent adverse reactions which are reported to occur in 1–4% of patients are:

Gastrointestinal: vomiting, diarrhea, constipation.

Cardiovascular: edema, orthostatic hypotension, dyspnea, syncope.

Central Nervous System: vertigo, depression, nervousness.

Dermatologic: rash.

Genitourinary: urinary frequency.

EENT: blurred vision, reddened sclera, epistaxis, dry mouth, nasal congestion.

In addition, fewer than 1% of patients have reported the following (in some instances, exact causal relationships have not been established):

Gastrointestinal: abdominal discomfort and/or pain, liver function abnormalities, pancreatitis.

Cardiovascular: tachycardia.

Central Nervous System: paresthesia, hallucinations.

Dermatologic: pruritus, alopecia, lichen planus.

Genitourinary: incontinence, impotence, priapism.

EENT: tinnitus.

Other: diaphoresis, fever, positive ANA titer, arthralgia.

Single reports of pigmentary mottling and serous retinopathy, and a few reports of cataract development or disappearance have been reported. In these instances, the exact causal relationship has not been established because the baseline observations were frequently inadequate.

In more specific slit-lamp and funduscopic studies, which included adequate baseline examinations, no drug-related abnormal ophthalmological findings have been reported.

Literature reports exist associating MINIPRESS therapy with a worsening of pre-existing narcolepsy. A causal relationship is uncertain in these cases.

In post-marketing experience, the following adverse events have been reported:

Autonomic Nervous System: flushing.

Body As A Whole: allergic reaction, asthenia, malaise, pain.

Cardiovascular, General: angina pectoris, hypotension.

Endocrine: gynecomastia.

Heart Rate/Rhythm: bradycardia.

Psychiatric: insomnia.

Skin/Appendages: urticaria.

Vascular (Extracardiac): vasculitis.

Vision: eye pain.

Special Senses: During cataract surgery, a variant of small pupil syndrome known as Intraoperative Floppy Iris Syndrome (IFIS) has been reported in association with alpha-1 blocker therapy (see PRECAUTIONS).

INDICATIONS AND USAGE

MINIPRESS is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes, including this drug.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

MINIPRESS can be used alone or in combination with other antihypertensive drugs such as diuretics or beta-adrenergic blocking agents.

NITROSTAT® (nitroglycerin)

These highlights do not include all the information needed to use NITROSTAT safety and effectively. See full prescribing information for NITROSTAT.

CONTRAINDICATIONS

Nitroglycerin is contraindicated in patients who are allergic to it.

Sublingual nitroglycerin therapy is contraindicated in patients with early myocardial infarction, severe anemia, increased intracranial pressure, and those with a known hypersensitivity to nitroglycerin.

Administration of NITROSTAT is contraindicated in patients who are using a phosphodiesterase-5 (PDE-5) inhibitor (e.g., sildenafil citrate, tadalafil, vardenafil hydrochloride) since these compounds have been shown to potentiate the hypotensive effects of organic nitrates.

Do not use NITROSTAT in patients who are taking the soluble guanylate cyclase stimulator riociguat. Concomitant use can cause hypotension.

WARNINGS

The benefits of sublingual nitroglycerin in patients with acute myocardial infarction or congestive heart failure have not been established. If one elects to use nitroglycerin in these conditions, careful clinical or hemodynamic monitoring must be used because of the possibility of hypotension and tachycardia.


PRECAUTIONS

General

Only the smallest dose required for effective relief of the acute anginal attack should be used. Excessive use may lead to the development of tolerance. NITROSTAT tablets are intended for sublingual or buccal administration and should not be swallowed.

Severe hypotension, particularly with upright posture, may occur with small doses of nitroglycerin. This drug should therefore be used with caution in patients who may be volume-depleted or who, for whatever reason, are already hypotensive. Hypotension induced by nitroglycerin may be accompanied by paradoxical bradycardia and increased angina pectoris.

Nitrate therapy may aggravate the angina caused by hypertrophic cardiomyopathy.

As tolerance to other forms of nitroglycerin develops, the effects of sublingual nitroglycerin on exercise tolerance, although still observable, is blunted.

In industrial workers who have had long-term exposure to unknown (presumably high) doses of organic nitrates, tolerance rarely occurs. Chest pain, acute myocardial infarction, and even sudden death have occurred during temporary withdrawal of nitrates from these workers, demonstrating the existence of true physical dependence.

Several clinical trials of nitroglycerin patches or infusions in patients with angina pectoris have evaluated regimens that incorporated a 10- to 12-hour nitrate free interval. In some of these trials, an increase in the frequency of anginal attacks during the nitrate free interval was observed in a small number of patients. In one trial, patients had decreased exercise tolerance at the end of the nitrate interval. Hemodynamic rebound has been observed only rarely; on the other hand, few studies were so designed that rebound, if it had occurred, would have been detected.

Nitrate tolerance as a result of sublingual nitroglycerin administration is probably possible, but only in patients who maintain high continuous nitrate levels for more than 10 or 12 hours daily. Such use of sublingual nitroglycerin would entail administration of scores of tablets daily and is not recommended.

The drug should be discontinued if blurring of vision or drying of the mouth occurs. Excessive dosage of nitroglycerin may produce severe headaches.

Information for Patients

NITROSTAT is a sublingual tablet and should not be chewed, crushed, or swallowed.

If possible, patients should sit down when taking NITROSTAT tablets and should use caution when returning to a standing position. This eliminates the possibility of falling due to lightheadedness or dizziness.

One tablet should be dissolved under the tongue or in the buccal pouch at the first sign of an acute anginal attack. The dose may be repeated approximately every 5 minutes until relief is obtained.

If chest pain persists after a total of 3 tablets in a 15-minute period, or if the pain is different than is typically experienced, prompt medical attention is recommended.

NITROSTAT may be used prophylactically 5 to 10 minutes prior to engaging in activities that might precipitate an acute attack.

Nitroglycerin may produce a burning or tingling sensation when administered sublingually; however, the ability to produce a burning or tingling sensation should not be considered a reliable method for determining the potency of the tablets.

Headaches can sometimes accompany treatment with nitroglycerin. In patients who get these headaches, the headaches may be a marker of the activity of the drug.

Treatment with nitroglycerin may be associated with lightheadedness upon standing, especially just after rising from a recumbent or seated position. This effect may be more frequent in patients who have also consumed alcohol.

Nitroglycerin should be kept in the original glass container and must be tightly capped after each use to prevent loss of tablet potency.

Drug Interactions

Concomitant use of NITROSTAT with soluble guanylate cyclase stimulators is contraindicated (see CONTRAINDICATIONS).

Concomitant use of nitrates and alcohol may cause hypotension.

The vasodilatory and hemodynamic effects of nitroglycerin may be enhanced by concomitant administration of aspirin.

Intravenous administration of nitroglycerin decreases the thrombolytic effect of alteplase. Therefore, caution should be observed in patients receiving sublingual nitroglycerin during alteplase therapy.

Intravenous nitroglycerin reduces the anticoagulant effect of heparin and activated partial thromboplastin times (APTT) should be monitored in patients receiving heparin and intravenous nitroglycerin. It is not known if this effect occurs following single sublingual nitroglycerin doses.

Tricyclic antidepressants (amitriptyline, desipramine, doxepin, others) and anticholinergic drugs may cause dry mouth and diminished salivary secretions. This may make dissolution of sublingual nitroglycerin difficult. Increasing salivation with chewing gum or artificial saliva products may prove useful in aiding dissolution of sublingual nitroglycerin.

Oral administration of nitroglycerin markedly decreases the first-pass metabolism of dihydroergotamine and subsequently increases its oral bioavailability. Ergotamine is known to precipitate angina pectoris. Therefore, patients receiving sublingual nitroglycerin should avoid ergotamine and related drugs or be monitored for symptoms of ergotism if this is not possible.

Administration of nitroglycerin is contraindicated in patients who are using PDE-5 inhibitors (e.g., sildenafil citrate, tadalafil, vardenafil hydrochloride). These compounds have been shown to potentiate the hypotensive effects of organic nitrates.

A decrease in therapeutic effect of sublingual nitroglycerin may result from use of long-acting nitrates.

Drug/Laboratory Test Interactions

Nitrates may interfere with the Zlatkis-Zak color reaction, causing a false report of decreased serum cholesterol.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Animal carcinogenesis studies with sublingually administered nitroglycerin have not been performed.

Carcinogenicity potential of nitroglycerin was evaluated in rats receiving up to 434 mg/kg/day of dietary nitroglycerin for 2 years. Rats developed dose-related fibrotic and neoplastic changes in liver, including carcinomas, and interstitial cell tumors in testes. At high dose, the incidences of hepatocellular carcinomas in males was 48% and in females was 33%, compared to 0% in untreated controls. Incidences of testicular tumors were 52% vs. 8% in controls. Lifetime dietary administration of up to 1058 mg/kg/day of nitroglycerin was not tumorigenic in mice.

Nitroglycerin was mutagenic in Ames tests performed in 2 different laboratories. Nevertheless, there was no evidence of mutagenicity in an in vivo dominant lethal assay with male rats treated with doses up to about 363 mg/kg/day, PO, or in ex vivo cytogenetic tests in rat and dog cells.

In a 3-generation reproduction study, rats received dietary nitroglycerin at doses up to about 434 mg/kg/day for 6 months prior to mating of the F0 generation, with treatment continuing through successive F1 and F2 generations. The high dose was associated with decreased feed intake and body weight gain in both sexes at all matings. No specific effect on the fertility of the F0 generation was seen. Infertility noted in subsequent generations, however, was attributed to increased interstitial cell tissue and aspermatogenesis in the high-dose males. In this 3-generation study, there was no clear evidence of teratogenicity.

Pregnancy Category B

Animal reproduction and teratogenicity studies have not been conducted with nitroglycerin sublingual tablets. However, teratology studies conducted in rats and rabbits with topically applied nitroglycerin ointment at dosages up to 80 mg/kg/day and 240 mg/kg/day, respectively revealed no toxic effects on dams or fetuses.

There are no adequate and well-controlled studies in pregnant women. Nitroglycerin should be given to a pregnant woman only if clearly needed.

Nursing Mothers

It is not known whether nitroglycerin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when nitroglycerin is administered to a nursing woman.

Pediatric Use

The safety and effectiveness of nitroglycerin in pediatric patients have not been established.

Geriatric Use

Clinical studies of NITROSTAT did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

ADVERSE REACTIONS

Headache that may be severe and persistent may occur immediately after use. Vertigo, dizziness, weakness, palpitation, and other manifestations of postural hypotension may develop occasionally, particularly in erect, immobile patients. Marked sensitivity to the hypotensive effects of nitrates (manifested by nausea, vomiting, weakness, diaphoresis, pallor, and collapse) may occur at therapeutic doses. Syncope due to nitrate vasodilatation has been reported. Flushing, drug rash, and exfoliative dermatitis have been reported in patients receiving nitrate therapy.

INDICATIONS AND USAGE

Nitroglycerin is indicated for the acute relief of an attack or acute prophylaxis of angina pectoris due to coronary artery disease.

NORVASC® (amlodipine besilate)

These highlights do not include all the information needed to use NORVASC safety and effectively. See full prescribing information for NORVASC.

4 CONTRAINDICATIONS

NORVASC is contraindicated in patients with known sensitivity to amlodipine.

5 WARNINGS AND PRECAUTIONS

5.1 Hypotension

Symptomatic hypotension is possible, particularly in patients with severe aortic stenosis. Because of the gradual onset of action, acute hypotension is unlikely.

5.2 Increased Angina or Myocardial Infarction

Worsening angina and acute myocardial infarction can develop after starting or increasing the dose of NORVASC, particularly in patients with severe obstructive coronary artery disease.

5.3 Patients with Hepatic Failure

Because NORVASC is extensively metabolized by the liver and the plasma elimination half-life (t 1/2) is 56 hours in patients with impaired hepatic function, titrate slowly when administering NORVASC to patients with severe hepatic impairment.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

NORVASC has been evaluated for safety in more than 11,000 patients in U.S. and foreign clinical trials. In general, treatment with NORVASC was well-tolerated at doses up to 10 mg daily. Most adverse reactions reported during therapy with NORVASC were of mild or moderate severity. In controlled clinical trials directly comparing NORVASC (N=1730) at doses up to 10 mg to placebo (N=1250), discontinuation of NORVASC because of adverse reactions was required in only about 1.5% of patients and was not significantly different from placebo (about 1%). The most commonly reported side effects more frequent than placebo are reflected in the table below. The incidence (%) of side effects that occurred in a dose related manner are as follows:

Amlodipine Placebo
2.5 mg 5 mg 10 mg
N=275 N=296 N=268 N=520
Edema 1.8 3.0 10.8 0.6
Dizziness 1.1 3.4 3.4 1.5
Flushing 0.7 1.4 2.6 0.0
Palpitation 0.7 1.4 4.5 0.6

Other adverse reactions that were not clearly dose related but were reported with an incidence greater than 1.0% in placebo-controlled clinical trials include the following:

NORVASC (%) Placebo (%)
(N=1730) (N=1250)
Fatigue 4.5 2.8
Nausea 2.9 1.9
Abdominal Pain 1.6 0.3
Somnolence 1.4 0.6

For several adverse experiences that appear to be drug and dose related, there was a greater incidence in women than men associated with amlodipine treatment as shown in the following table:

NORVASC Placebo
Male=% Female=% Male=% Female=%
(N=1218) (N=512) (N=914) (N=336)
Edema 5.6 14.6 1.4 5.1
Flushing 1.5 4.5 0.3 0.9
Palpitations 1.4 3.3 0.9 0.9
Somnolence 1.3 1.6 0.8 0.3

The following events occurred in <1% but >0.1% of patients in controlled clinical trials or under conditions of open trials or marketing experience where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:

Cardiovascular: arrhythmia (including ventricular tachycardia and atrial fibrillation), bradycardia, chest pain, peripheral ischemia, syncope, tachycardia, vasculitis.

Central and Peripheral Nervous System: hypoesthesia, neuropathy peripheral, paresthesia, tremor, vertigo.

Gastrointestinal: anorexia, constipation, dysphagia, diarrhea, flatulence, pancreatitis, vomiting, gingival hyperplasia.

General: allergic reaction, asthenia,1 back pain, hot flushes, malaise, pain, rigors, weight gain, weight decrease.

Musculoskeletal System: arthralgia, arthrosis, muscle cramps,1 myalgia.

Psychiatric: sexual dysfunction (male1 and female), insomnia, nervousness, depression, abnormal dreams, anxiety, depersonalization.

Respiratory System: dyspnea,1 epistaxis.

Skin and Appendages: angioedema, erythema multiforme, pruritus,1 rash,1 rash erythematous, rash maculopapular.

Special Senses: abnormal vision, conjunctivitis, diplopia, eye pain, tinnitus.

Urinary System: micturition frequency, micturition disorder, nocturia.

Autonomic Nervous System: dry mouth, sweating increased.

Metabolic and Nutritional: hyperglycemia, thirst.

Hemopoietic: leukopenia, purpura, thrombocytopenia.

NORVASC therapy has not been associated with clinically significant changes in routine laboratory tests. No clinically relevant changes were noted in serum potassium, serum glucose, total triglycerides, total cholesterol, HDL cholesterol, uric acid, blood urea nitrogen, or creatinine.

In the CAMELOT and PREVENT studies [see Clinical Studies (14.4)], the adverse event profile was similar to that reported previously (see above), with the most common adverse event being peripheral edema.


1
These events occurred in less than 1% in placebo-controlled trials, but the incidence of these side effects was between 1% and 2% in all multiple dose studies.

6.2 Postmarketing Experience

Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

The following postmarketing event has been reported infrequently where a causal relationship is uncertain: gynecomastia. In postmarketing experience, jaundice and hepatic enzyme elevations (mostly consistent with cholestasis or hepatitis), in some cases severe enough to require hospitalization, have been reported in association with use of amlodipine.

Postmarketing reporting has also revealed a possible association between extrapyramidal disorder and amlodipine.

NORVASC has been used safely in patients with chronic obstructive pulmonary disease, well-compensated congestive heart failure, coronary artery disease, peripheral vascular disease, diabetes mellitus, and abnormal lipid profiles.

1 INDICATIONS AND USAGE

1.1 Hypertension

NORVASC® is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including NORVASC.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

NORVASC may be used alone or in combination with other antihypertensive agents.

1.2 Coronary Artery Disease (CAD)

 
Chronic Stable Angina
NORVASC is indicated for the symptomatic treatment of chronic stable angina. NORVASC may be used alone or in combination with other antianginal agents.
 
 
Vasospastic Angina (Prinzmetal's or Variant Angina)
NORVASC is indicated for the treatment of confirmed or suspected vasospastic angina. NORVASC may be used as monotherapy or in combination with other antianginal agents.
 
 
Angiographically Documented CAD
In patients with recently documented CAD by angiography and without heart failure or an ejection fraction <40%, NORVASC is indicated to reduce the risk of hospitalization for angina and to reduce the risk of a coronary revascularization procedure.

PROCARDIA® (nifedipine capsules)

These highlights do not include all the information needed to use PROCARDIA safety and effectively. See full prescribing information for PROCARDIA.

CONTRAINDICATIONS

Known hypersensitivity reaction to PROCARDIA.

WARNINGS

Excessive Hypotension

Although, in most patients, the hypotensive effect of PROCARDIA is modest and well tolerated, occasional patients have had excessive and poorly tolerated hypotension. These responses have usually occurred during initial titration or at the time of subsequent upward dosage adjustment. Although patients have rarely experienced excessive hypotension on PROCARDIA alone, this may be more common in patients on concomitant beta blocker therapy. Although not approved for this purpose, PROCARDIA and other immediate-release nifedipine capsules have been used (orally and sublingually) for acute reduction of blood pressure. Several well-documented reports describe cases of profound hypotension, myocardial infarction, and death when immediate-release nifedipine was used in this way. PROCARDIA capsules should not be used for the acute reduction of blood pressure.

Severe hypotension and/or increased fluid volume requirements have been reported in patients receiving PROCARDIA together with a beta-blocking agent who underwent coronary artery bypass surgery using high dose fentanyl anesthesia. The interaction with high dose fentanyl appears to be due to the combination of PROCARDIA and a beta blocker, but the possibility that it may occur with PROCARDIA alone, with low doses of fentanyl, in other surgical procedures, or with other narcotic analgesics cannot be ruled out. In PROCARDIA treated patients where surgery using high dose fentanyl anesthesia is contemplated, the physician should be aware of these potential problems and, if the patient's condition permits, sufficient time (at least 36 hours) should be allowed for PROCARDIA to be washed out of the body prior to surgery.

Increased Angina and/or Myocardial Infarction

Rarely, patients, particularly those who have severe obstructive coronary artery disease, have developed well documented increased frequency, duration, and/or severity of angina or acute myocardial infarction on starting PROCARDIA or at the time of dosage increase. The mechanism of this effect is not established.

Several well-controlled, randomized trials studied the use of immediate-release nifedipine in patients who had just sustained myocardial infarctions. In none of these trials did immediate-release nifedipine appear to provide any benefit. In some of the trials, patients who received immediate-release nifedipine had significantly worse outcomes than patients who received placebo. PROCARDIA capsules should not be administered within the first week or two after myocardial infarction, and they should also be avoided in the setting of acute coronary syndrome (when infarction may be imminent).

Use in Essential Hypertension

PROCARDIA and other immediate-release nifedipine capsules have also been used for the long-term control of essential hypertension, although PROCARDIA capsules have not been approved for this purpose and no properly controlled studies have been conducted to define an appropriate dose or dose interval for such treatment. PROCARDIA capsules should not be used for the control of essential hypertension.

Beta Blocker Withdrawal

Patients recently withdrawn from beta blockers may develop a withdrawal syndrome with increased angina, probably related to increased sensitivity to catecholamines. Initiation of PROCARDIA treatment will not prevent this occurrence and might be expected to exacerbate it by provoking reflex catecholamine release. There have been occasional reports of increased angina in a setting of beta blocker withdrawal and PROCARDIA initiation. It is important to taper beta blockers if possible, rather than stopping them abruptly before beginning PROCARDIA.

Congestive Heart Failure

Rarely, patients, usually those receiving a beta blocker, have developed heart failure after beginning PROCARDIA. Patients with tight aortic stenosis may be at greater risk for such an event, as the unloading effect of PROCARDIA would be expected to be of less benefit to these patients, owing to their fixed impedance to flow across the aortic valve.


PRECAUTIONS

General

Hypotension

Because PROCARDIA decreases peripheral vascular resistance, careful monitoring of blood pressure during the initial administration and titration of PROCARDIA is suggested. Close observation is especially recommended for patients already taking medications that are known to lower blood pressure. (See WARNINGS.)

Peripheral Edema

Mild to moderate peripheral edema, typically associated with arterial vasodilation and not due to left ventricular dysfunction, occurs in about one in ten patients treated with PROCARDIA (nifedipine). This edema occurs primarily in the lower extremities and usually responds to diuretic therapy. With patients whose angina is complicated by congestive heart failure, care should be taken to differentiate this peripheral edema from the effects of increasing left ventricular dysfunction.

Laboratory Tests

Rare, usually transient, but occasionally significant elevations of enzymes such as alkaline phosphatase, CPK, LDH, SGOT, and SGPT have been noted. The relationship to PROCARDIA therapy is uncertain in most cases, but probable in some. These laboratory abnormalities have rarely been associated with clinical symptoms; however, cholestasis with or without jaundice has been reported. Rare instances of allergic hepatitis have been reported.

PROCARDIA, like other calcium channel blockers, decreases platelet aggregation in vitro. Limited clinical studies have demonstrated a moderate but statistically significant decrease in platelet aggregation and an increase in bleeding time in some PROCARDIA patients. This is thought to be a function of inhibition of calcium transport across the platelet membrane. No clinical significance for these findings has been demonstrated.

Positive direct Coombs Test with/without hemolytic anemia has been reported but a causal relationship between PROCARDIA administration and positivity of this laboratory test, including hemolysis, could not be determined.

Although PROCARDIA has been used safely in patients with renal dysfunction and has been reported to exert a beneficial effect, in certain cases, rare, reversible elevations in BUN and serum creatinine have been reported in patients with pre-existing chronic renal insufficiency. The relationship to PROCARDIA therapy is uncertain in most cases but probable in some.

Drug Interactions

Beta-adrenergic blocking agents

(See INDICATIONS AND USAGE and WARNINGS.) Experience in over 1400 patients in a non-comparative clinical trial has shown that concomitant administration of PROCARDIA and beta-blocking agents is usually well tolerated, but there have been occasional literature reports suggesting that the combination may increase the likelihood of congestive heart failure, severe hypotension, or exacerbation of angina.

Long-acting nitrates

PROCARDIA may be safely co-administered with nitrates, but there have been no controlled studies to evaluate the antianginal effectiveness of this combination.

Digitalis

Since there have been isolated reports of patients with elevated digoxin levels, and since there is a possible interaction between digoxin and nifedipine, it is recommended that digoxin levels be monitored when initiating, adjusting, and discontinuing nifedipine to avoid possible over- or under-digitalization.

Quinidine

There have been rare reports of an interaction between quinidine and nifedipine (with a decreased plasma level of quinidine).

Coumarin anticoagulants

There have been rare reports of increased prothrombin time in patients taking coumarin anticoagulants to whom PROCARDIA was administered. However, the relationship to PROCARDIA therapy is uncertain.

Cimetidine

A study in six healthy volunteers has shown a significant increase in peak nifedipine plasma levels (80%) and area-under-the-curve (74%) after a one week course of cimetidine at 1000 mg per day and nifedipine at 40 mg per day. Ranitidine produced smaller, non-significant increases. The effect may be mediated by the known inhibition of cimetidine on hepatic cytochrome P-450, the enzyme system probably responsible for the first-pass metabolism of nifedipine. If nifedipine therapy is initiated in a patient currently receiving cimetidine, cautious titration is advised.

Nifedipine is metabolized by CYP3A4. Co-administration of nifedipine with phenytoin, an inducer of CYP3A4, lowers the systemic exposure to nifedipine by approximately 70%. Avoid co-administration of nifedipine with phenytoin or any known CYP3A4 inducer or consider an alternative antihypertensive therapy.

CYP3A inhibitors such as fluconazole, itraconazole, clarithromycin, erythromycin, nefazodone, fluoxetine, saquinavir, indinavir, and nelfinavir may result in increased exposure to nifedipine when co-administered. Careful monitoring and dose adjustment may be necessary; consider initiating nifedipine at the lowest dose available if given concomitantly with these medications.

Other Interactions

Grapefruit Juice

Co-administration of nifedipine with grapefruit juice resulted in approximately a doubling in nifedipine AUC and Cmax with no change in half-life. The increased plasma concentrations most likely result from inhibition of CYP 3A4 related first-pass metabolism. Avoid ingestion of grapefruit and grapefruit juice while taking nifedipine.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Nifedipine was administered orally to rats for two years and was not shown to be carcinogenic. When given to rats prior to mating, nifedipine caused reduced fertility at a dose approximately 5 times the maximum recommended human dose. There is a literature report of reversible reduction in the ability of human sperm obtained from a limited number of infertile men taking recommended doses of nifedipine to bind to and fertilize an ovum in vitro. In vivo mutagenicity studies were negative.

Pregnancy

Nifedipine has been shown to produce teratogenic findings in rats and rabbits, including digital anomalies similar to those reported for phenytoin. Digital anomalies have been reported to occur with other members of the dihydropyridine class and are possibly a result of compromised uterine blood flow. Nifedipine administration was associated with a variety of embryotoxic, placentotoxic, and fetotoxic effects, including stunted fetuses (rats, mice, rabbits), rib deformities (mice), cleft palate (mice), small placentas and underdeveloped chorionic villi (monkeys), embryonic and fetal deaths (rats, mice, rabbits), and prolonged pregnancy/decreased neonatal survival (rats; not evaluated in other species). On a mg/kg basis, all of the doses associated with the teratogenic embryotoxic or fetotoxic effects in animals were higher (5 to 50 times) than the maximum recommended human dose of 120 mg/day. On a mg/m2 basis, some doses were higher and some were lower than the maximum recommended human dose but all were within an order of magnitude of it. The doses associated with placentotoxic effects in monkeys were equivalent to or lower than the maximum recommended human dose on a mg/m2 basis.

There are no adequate and well-controlled studies in pregnant women. PROCARDIA should be used during pregnancy only if the potential benefit justifies the potential risk.

Lactation

Nifedipine is transferred through breast milk. PROCARDIA should be used during breast-feeding only if the potential benefit justifies the potential risk.

Pediatric Use

Safety and effectiveness in pediatric patients have not been established. Use in pediatric population is not recommended.

Geriatric Use

Age appears to have a significant effect on the pharmacokinetics of nifedipine. The clearance is decreased resulting in a higher AUC in the elderly. These changes are not due to changes in renal function (see CLINICAL PHARMACOLOGY, Pharmacokinetics).

ADVERSE REACTIONS

In multiple-dose United States and foreign controlled studies in which adverse reactions were reported spontaneously, adverse effects were frequent but generally not serious and rarely required discontinuation of therapy or dosage adjustment. Most were expected consequences of the vasodilator effects of PROCARDIA.

   PROCARDIA (%) Placebo (%)
Adverse Effect (N=226) (N=235)
Dizziness, lightheadedness, giddiness 27 15
Flushing, heat sensation 25 8
Headache 23 20
Weakness 12 10
Nausea, heartburn 11 8
Muscle cramps, tremor 8 3
Peripheral edema 7 1
Nervousness, mood changes 7 4
Palpitation 7 5
Dyspnea, cough, wheezing 6 3
Nasal congestion, sore throat 6 8

There is also a large uncontrolled experience in over 2100 patients in the United States. Most of the patients had vasospastic or resistant angina pectoris, and about half had concomitant treatment with beta-adrenergic blocking agents. The most common adverse events were:

Incidence Approximately 10%

Cardiovascular: peripheral edema
Central Nervous System: dizziness or lightheadedness
Gastrointestinal: nausea
Systemic: headache and flushing, weakness

Incidence Approximately 5%

Cardiovascular: transient hypotension

Incidence 2% or Less

Cardiovascular: palpitation
Respiratory: nasal and chest congestion, shortness of breath
Gastrointestinal: diarrhea, constipation, cramps, flatulence
Musculoskeletal: inflammation, joint stiffness, muscle cramps
Central Nervous System: shakiness, nervousness, jitteriness, sleep disturbances, blurred vision, difficulties in balance
Other: dermatitis, pruritus, urticaria, fever, sweating, chills, sexual difficulties

Incidence Approximately 0.5%

Cardiovascular: syncope (mostly with initial dosing and/or an increase in dose), erythromelalgia

Incidence Less Than 0.5%

Hematologic: thrombocytopenia, anemia, leukopenia, purpura
Gastrointestinal: allergic hepatitis
Face and Throat: angioedema (mostly oropharyngeal edema with breathing difficulty in a few patients), gingival hyperplasia
CNS: depression, paranoid syndrome
Special Senses: transient blindness at the peak of plasma level, tinnitus
Urogenital: nocturia, polyuria
Other: arthritis with ANA (+), exfoliative dermatitis, gynecomastia
Musculoskeletal: myalgia

Several of these side effects appear to be dose related. Peripheral edema occurred in about one in 25 patients at doses less than 60 mg per day and in about one patient in eight at 120 mg per day or more. Transient hypotension, generally of mild to moderate severity and seldom requiring discontinuation of therapy, occurred in one of 50 patients at less than 60 mg per day and in one of 20 patients at 120 mg per day or more.

Very rarely, introduction of PROCARDIA therapy was associated with an increase in anginal pain, possibly due to associated hypotension. Transient unilateral loss of vision has also occurred.

In addition, more serious adverse events were observed, not readily distinguishable from the natural history of the disease in these patients. It remains possible, however, that some or many of these events were drug related. Myocardial infarction occurred in about 4% of patients and congestive heart failure or pulmonary edema in about 2%. Ventricular arrhythmias or conduction disturbances each occurred in fewer than 0.5% of patients.

In a subgroup of over 1000 patients receiving PROCARDIA with concomitant beta blocker therapy, the pattern and incidence of adverse experiences were not different from that of the entire group of PROCARDIA (nifedipine) treated patients. (See PRECAUTIONS.)

In a subgroup of approximately 250 patients with a diagnosis of congestive heart failure as well as angina pectoris (about 10% of the total patient population), dizziness or lightheadedness, peripheral edema, headache, or flushing each occurred in one in eight patients. Hypotension occurred in about one in 20 patients. Syncope occurred in approximately one patient in 250. Myocardial infarction or symptoms of congestive heart failure each occurred in about one patient in 15. Atrial or ventricular dysrhythmias each occurred in about one patient in 150.

In post-marketing experience, there have been rare reports of exfoliative dermatitis caused by nifedipine. There have been rare reports of exfoliative or bullous skin adverse events (such as erythema multiforme, Stevens-Johnson Syndrome, and toxic epidermal necrolysis) and photosensitivity reactions. Acute generalized exanthematous pustulosis also has been reported.

INDICATIONS AND USAGE

I. Vasospastic Angina

PROCARDIA (nifedipine) is indicated for the management of vasospastic angina confirmed by any of the following criteria: 1) classical pattern of angina at rest accompanied by ST segment elevation, 2) angina or coronary artery spasm provoked by ergonovine, or 3) angiographically demonstrated coronary artery spasm. In those patients who have had angiography, the presence of significant fixed obstructive disease is not incompatible with the diagnosis of vasospastic angina, provided that the above criteria are satisfied. PROCARDIA may also be used where the clinical presentation suggests a possible vasospastic component but where vasospasm has not been confirmed, e.g., where pain has a variable threshold on exertion or when angina is refractory to nitrates and/or adequate doses of beta blockers.

II. Chronic Stable Angina
    (Classical Effort-Associated Angina)

PROCARDIA is indicated for the management of chronic stable angina (effort-associated angina) without evidence of vasospasm in patients who remain symptomatic despite adequate doses of beta blockers and/or organic nitrates or who cannot tolerate those agents.

In chronic stable angina (effort-associated angina), PROCARDIA has been effective in controlled trials of up to eight weeks duration in reducing angina frequency and increasing exercise tolerance, but confirmation of sustained effectiveness and evaluation of long-term safety in these patients are incomplete.

Controlled studies in small numbers of patients suggest concomitant use of PROCARDIA and beta-blocking agents may be beneficial in patients with chronic stable angina, but available information is not sufficient to predict with confidence the effects of concurrent treatment, especially in patients with compromised left ventricular function or cardiac conduction abnormalities. When introducing such concomitant therapy, care must be taken to monitor blood pressure closely since severe hypotension can occur from the combined effects of the drugs. (See WARNINGS.)

PROCARDIA® XL (nifedipine extended release tablets)

These highlights do not include all the information needed to use PROCARDIA XL safety and effectively. See full prescribing information for PROCARDIA XL.

CONTRAINDICATIONS

Known hypersensitivity reaction to nifedipine.

WARNINGS

Excessive Hypotension

Although in most angina patients the hypotensive effect of nifedipine is modest and well tolerated, occasional patients have had excessive and poorly tolerated hypotension. These responses have usually occurred during initial titration or at the time of subsequent upward dosage adjustment, and may be more likely in patients on concomitant beta blockers.

Severe hypotension and/or increased fluid volume requirements have been reported in patients receiving nifedipine together with a beta-blocking agent who underwent coronary artery bypass surgery using high dose fentanyl anesthesia. The interaction with high dose fentanyl appears to be due to the combination of nifedipine and a beta blocker, but the possibility that it may occur with nifedipine alone, with low doses of fentanyl, in other surgical procedures, or with other narcotic analgesics cannot be ruled out. In nifedipine-treated patients where surgery using high dose fentanyl anesthesia is contemplated, the physician should be aware of these potential problems and, if the patient's condition permits, sufficient time (at least 36 hours) should be allowed for nifedipine to be washed out of the body prior to surgery.

The following information should be taken into account in those patients who are being treated for hypertension as well as angina:

Increased Angina and/or Myocardial Infarction

Rarely, patients, particularly those who have severe obstructive coronary artery disease, have developed well documented increased frequency, duration and/or severity of angina or acute myocardial infarction on starting nifedipine or at the time of dosage increase. The mechanism of this effect is not established.

Beta Blocker Withdrawal

It is important to taper beta blockers if possible, rather than stopping them abruptly before beginning nifedipine. Patients recently withdrawn from beta blockers may develop a withdrawal syndrome with increased angina, probably related to increased sensitivity to catecholamines. Initiation of nifedipine treatment will not prevent this occurrence and on occasion has been reported to increase it.

Congestive Heart Failure

Rarely, patients, usually receiving a beta blocker, have developed heart failure after beginning nifedipine. Patients with tight aortic stenosis may be at greater risk for such an event, as the unloading effect of nifedipine would be expected to be of less benefit, owing to the fixed impedance to flow across the aortic valve in these patients.

Gastrointestinal Obstruction Requiring Surgery

There have been rare reports of obstructive symptoms in patients with known strictures in association with the ingestion of PROCARDIA XL. Bezoars can occur in very rare cases and may require surgical intervention.

Cases of serious gastrointestinal obstruction have been identified in patients with no known gastrointestinal disease, including the need for hospitalization and surgical intervention.

Risk factors for a gastrointestinal obstruction identified from post-marketing reports of PROCARDIA XL (GITS tablet formulation) include alteration in gastrointestinal anatomy (e.g., severe gastrointestinal narrowing, colon cancer, small bowel obstruction, bowel resection, gastric bypass, vertical banded gastroplasty, colostomy, diverticulitis, diverticulosis, and inflammatory bowel disease), hypomotility disorders (e.g., constipation, gastroesophageal reflux disease, ileus, obesity, hypothyroidism, and diabetes) and concomitant medications (e.g., H2-histamine blockers, opiates, nonsteroidal anti-inflammatory drugs, laxatives, anticholinergic agents, levothyroxine, and neuromuscular blocking agents).

Gastrointestinal Ulcers

Cases of tablet adherence to the gastrointestinal wall with ulceration have been reported, some requiring hospitalization and intervention.


PRECAUTIONS

General—Hypotension

Because nifedipine decreases peripheral vascular resistance, careful monitoring of blood pressure during the initial administration and titration of nifedipine is suggested. Close observation is especially recommended for patients already taking medications that are known to lower blood pressure (see WARNINGS).

Peripheral Edema

Mild to moderate peripheral edema occurs in a dose dependent manner with an incidence ranging from approximately 10% to about 30% at the highest dose studied (180 mg). It is a localized phenomenon thought to be associated with vasodilation of dependent arterioles and small blood vessels and not due to left ventricular dysfunction or generalized fluid retention. With patients whose angina or hypertension is complicated by congestive heart failure, care should be taken to differentiate this peripheral edema from the effects of increasing left ventricular dysfunction.

Information for Patients

PROCARDIA XL Extended Release Tablets should be swallowed whole. Do not chew, divide or crush tablets. Do not be concerned if you occasionally notice in your stool something that looks like a tablet. In PROCARDIA XL, the medication is contained within a nonabsorbable shell that has been specially designed to slowly release the drug for your body to absorb. When this process is completed, the empty tablet is eliminated from your body.

Laboratory Tests

Rare, usually transient, but occasionally significant elevations of enzymes such as alkaline phosphatase, CPK, LDH, SGOT and SGPT have been noted. The relationship to nifedipine therapy is uncertain in most cases, but probable in some. These laboratory abnormalities have rarely been associated with clinical symptoms; however, cholestasis with or without jaundice has been reported. A small (5.4%) increase in mean alkaline phosphatase was noted in patients treated with PROCARDIA XL. This was an isolated finding not associated with clinical symptoms and it rarely resulted in values which fell outside the normal range. Rare instances of allergic hepatitis have been reported. In controlled studies, PROCARDIA XL did not adversely affect serum uric acid, glucose, or cholesterol. Serum potassium was unchanged in patients receiving PROCARDIA XL in the absence of concomitant diuretic therapy, and slightly decreased in patients receiving concomitant diuretics.

Nifedipine, like other calcium channel blockers, decreases platelet aggregation in vitro. Limited clinical studies have demonstrated a moderate but statistically significant decrease in platelet aggregation and an increase in bleeding time in some nifedipine patients. This is thought to be a function of inhibition of calcium transport across the platelet membrane. No clinical significance for these findings has been demonstrated.

Positive direct Coombs test with/without hemolytic anemia has been reported, but a causal relationship between nifedipine administration and positivity of this laboratory test, including hemolysis, could not be determined.

Although nifedipine has been used safely in patients with renal dysfunction and has been reported to exert a beneficial effect, in certain cases, rare, reversible elevations in BUN and serum creatinine have been reported in patients with preexisting chronic renal insufficiency. The relationship to nifedipine therapy is uncertain in most cases but probable in some.

Drug Interactions

Beta-adrenergic blocking agents

(see INDICATIONS AND USAGE and WARNINGS) Experience in over 1400 patients with PROCARDIA capsules in a noncomparative clinical trial has shown that concomitant administration of nifedipine and beta-blocking agents is usually well tolerated, but there have been occasional literature reports suggesting that the combination may increase the likelihood of congestive heart failure, severe hypotension, or exacerbation of angina.

Long-acting Nitrates

Nifedipine may be safely co-administered with nitrates, but there have been no controlled studies to evaluate the antianginal effectiveness of this combination.

Digitalis

Administration of nifedipine with digoxin increased digoxin levels in nine of twelve normal volunteers. The average increase was 45%. Another investigator found no increase in digoxin levels in thirteen patients with coronary artery disease. In an uncontrolled study of over two hundred patients with congestive heart failure during which digoxin blood levels were not measured, digitalis toxicity was not observed. Since there have been isolated reports of patients with elevated digoxin levels, it is recommended that digoxin levels be monitored when initiating, adjusting, and discontinuing nifedipine to avoid possible over- or under-digitalization.

Coumarin Anticoagulants

There have been rare reports of increased prothrombin time in patients taking coumarin anticoagulants to whom nifedipine was administered. However, the relationship to nifedipine therapy is uncertain.

Cimetidine

A study in six healthy volunteers has shown a significant increase in peak nifedipine plasma levels (80%) and area-under-the-curve (74%), after a one week course of cimetidine at 1000 mg per day and nifedipine at 40 mg per day. Ranitidine produced smaller, non-significant increases. The effect may be mediated by the known inhibition of cimetidine on hepatic cytochrome P-450, the enzyme system probably responsible for the first-pass metabolism of nifedipine. If nifedipine therapy is initiated in a patient currently receiving cimetidine, cautious titration is advised.

Nifedipine is metabolized by CYP3A4. Co-administration of nifedipine with phenytoin, an inducer of CYP3A4, lowers the systemic exposure to nifedipine by approximately 70%. Avoid co-administration of nifedipine with phenytoin or any known CYP3A4 inducer or consider an alternative antihypertensive therapy.

CYP3A inhibitors such as fluconazole, itraconazole, clarithromycin, erythromycin, nefazodone, fluoxetine, saquinavir, indinavir, and nelfinavir may result in increased exposure to nifedipine when co-administered. Careful monitoring and dose adjustment may be necessary; consider initiating nifedipine at the lowest dose available if given concomitantly with these medications.

Other Interactions

Grapefruit Juice

Co-administration of nifedipine with grapefruit juice resulted in approximately a doubling in nifedipine AUC and Cmax with no change in half-life. The increased plasma concentrations most likely result from inhibition of CYP 3A4 related first-pass metabolism. Avoid ingestion of grapefruit and grapefruit juice should be avoided while taking nifedipine.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Nifedipine was administered orally to rats for two years and was not shown to be carcinogenic. When given to rats prior to mating, nifedipine caused reduced fertility at a dose approximately 5 times the maximum recommended human dose. There is a literature report of reversible reduction in the ability of human sperm obtained from a limited number of infertile men taking recommended doses of nifedipine to bind to and fertilize an ovum in vitro. In vivo mutagenicity studies were negative.

Pregnancy

Nifedipine has been shown to produce teratogenic findings in rats and rabbits, including digital anomalies similar to those reported for phenytoin. Digital anomalies have been reported to occur with other members of the dihydropyridine class and are possibly a result of compromised uterine blood flow. Nifedipine administration was associated with a variety of embryotoxic, placentotoxic, and fetotoxic effects, including stunted fetuses (rats, mice, rabbits), rib deformities (mice), cleft palate (mice), small placentas and underdeveloped chorionic villi (monkeys), embryonic and fetal deaths (rats, mice, rabbits), and prolonged pregnancy/decreased neonatal survival (rats; not evaluated in other species). On a mg/kg basis, all of the doses associated with the teratogenic embryotoxic or fetotoxic effects in animals were higher (5 to 50 times) than the maximum recommended human dose of 120 mg/day. On a mg/m2 basis, some doses were higher and some were lower than the maximum recommended human dose, but all are within an order of magnitude of it. The doses associated with placentotoxic effects in monkeys were equivalent to or lower than the maximum recommended human dose on a mg/m2 basis.

There are no adequate and well-controlled studies in pregnant women. PROCARDIA XL Extended Release Tablets should be used during pregnancy only if the potential benefit justifies the potential risk.

Lactation

Nifedipine is transferred through breast milk. PROCARDIA XL should be used during breast-feeding only if the potential benefit justifies the potential risk.

Pediatric Use

Safety and effectiveness in pediatric patients have not been established.

Geriatric Use

Age appears to have a significant effect on the pharmacokinetics of nifedipine. The clearance is decreased resulting in a higher AUC in the elderly. These changes are not due to changes in renal function (see CLINICAL PHARMACOLOGY, Pharmacokinetics).

ADVERSE EXPERIENCES

Over 1000 patients from both controlled and open trials with PROCARDIA XL Extended Release Tablets in hypertension and angina were included in the evaluation of adverse experiences. All side effects reported during PROCARDIA XL Extended Release Tablet therapy were tabulated independent of their causal relation to medication. The most common side effect reported with PROCARDIA XL was edema which was dose related and ranged in frequency from approximately 10% to about 30% at the highest dose studied (180 mg). Other common adverse experiences reported in placebo-controlled trials include:

Adverse Effect PROCARDIA XL (%)
(N=707)
Placebo (%)
(N=266)
Headache 15.8 9.8
Fatigue   5.9 4.1
Dizziness   4.1 4.5
Constipation   3.3 2.3
Nausea   3.3 1.9

Of these, only edema and headache were more common in PROCARDIA XL patients than placebo patients.

The following adverse reactions occurred with an incidence of less than 3.0%. With the exception of leg cramps, the incidence of these side effects was similar to that of placebo alone.

Body as a Whole/Systemic: asthenia, flushing, pain
Cardiovascular: palpitations
Central Nervous System: insomnia, nervousness, paresthesia, somnolence
Dermatologic: pruritus, rash
Gastrointestinal: abdominal pain, diarrhea, dry mouth, dyspepsia, flatulence
Musculoskeletal: arthralgia, leg cramps
Respiratory: chest pain (nonspecific), dyspnea
Urogenital: impotence, polyuria

Other adverse reactions were reported sporadically with an incidence of 1.0% or less. These include:

Body as a Whole/Systemic: face edema, fever, hot flashes, malaise, periorbital edema, rigors
Cardiovascular: arrhythmia, hypotension, increased angina, tachycardia, syncope
Central Nervous System: anxiety, ataxia, decreased libido, depression, hypertonia, hypoesthesia, migraine, paroniria, tremor, vertigo
Dermatologic: alopecia, increased sweating, urticaria, purpura
Gastrointestinal: eructation, gastroesophageal reflux, gum hyperplasia, melena, vomiting, weight increase
Musculoskeletal: back pain, gout, myalgias
Respiratory: coughing, epistaxis, upper respiratory tract infection, respiratory disorder, sinusitis
Special Senses: abnormal lacrimation, abnormal vision, taste perversion, tinnitus
Urogenital/Reproductive: breast pain, dysuria, hematuria, nocturia

Adverse experiences which occurred in less than 1 in 1000 patients cannot be distinguished from concurrent disease states or medications.

The following adverse experiences, reported in less than 1% of patients, occurred under conditions (e.g., open trials, marketing experience) where a causal relationship is uncertain: gastrointestinal irritation, gastrointestinal bleeding, gynecomastia.

Gastrointestinal obstruction resulting in hospitalization and surgery, including the need for bezoar removal, has occurred in association with PROCARDIA XL, even in patients with no prior history of gastrointestinal disease (see WARNINGS).

Cases of tablet adherence to the gastrointestinal wall with ulceration have been reported, some requiring hospitalization and intervention.

In multiple-dose U.S. and foreign controlled studies with nifedipine capsules in which adverse reactions were reported spontaneously, adverse effects were frequent but generally not serious and rarely required discontinuation of therapy or dosage adjustment. Most were expected consequences of the vasodilator effects of nifedipine.

Adverse Effect PROCARDIA CAPSULES (%)
(N=226)
Placebo (%)
(N=235)
Dizziness, lightheadedness, giddiness 27 15
Flushing, heat sensation 25 8
Headache 23 20
Weakness 12 10
Nausea, heartburn 11   8
Muscle cramps, tremor   8   3
Peripheral edema   7   1
Nervousness, mood changes   7   4
Palpitations   7   5
Dyspnea, cough, wheezing   6   3
Nasal congestion, sore throat   6   8

There is also a large uncontrolled experience in over 2100 patients in the United States. Most of the patients had vasospastic or resistant angina pectoris, and about half had concomitant treatment with beta-adrenergic blocking agents. The relatively common adverse events were similar in nature to those seen with PROCARDIA XL.

In addition, more serious adverse events were observed, not readily distinguishable from the natural history of the disease in these patients. It remains possible, however, that some or many of these events were drug related. Myocardial infarction occurred in about 4% of patients and congestive heart failure or pulmonary edema in about 2%. Ventricular arrhythmias or conduction disturbances each occurred in fewer than 0.5% of patients.

In a subgroup of over 1000 patients receiving PROCARDIA with concomitant beta blocker therapy, the pattern and incidence of adverse experiences was not different from that of the entire group of PROCARDIA-treated patients (see PRECAUTIONS).

In a subgroup of approximately 250 patients with a diagnosis of congestive heart failure as well as angina, dizziness or lightheadedness, peripheral edema, headache, or flushing each occurred in one in eight patients. Hypotension occurred in about one in 20 patients. Syncope occurred in approximately one patient in 250. Myocardial infarction or symptoms of congestive heart failure each occurred in about one patient in 15. Atrial or ventricular dysrhythmias each occurred in about one patient in 150.

In post-marketing experience, there have been rare reports of exfoliative dermatitis caused by nifedipine. There have been rare reports of exfoliative or bullous skin adverse events (such as erythema multiforme, Stevens-Johnson Syndrome, and toxic epidermal necrolysis) and photosensitivity reactions. Acute generalized exanthematous pustulosis also has been reported.

INDICATIONS AND USAGE

I. Vasospastic Angina

PROCARDIA XL is indicated for the management of vasospastic angina confirmed by any of the following criteria: 1) classical pattern of angina at rest accompanied by ST segment elevation, 2) angina or coronary artery spasm provoked by ergonovine, or 3) angiographically demonstrated coronary artery spasm. In those patients who have had angiography, the presence of significant fixed obstructive disease is not incompatible with the diagnosis of vasospastic angina, provided that the above criteria are satisfied. PROCARDIA XL may also be used where the clinical presentation suggests a possible vasospastic component, but where vasospasm has not been confirmed, e.g., where pain has a variable threshold on exertion, or in unstable angina where electrocardiographic findings are compatible with intermittent vasospasm, or when angina is refractory to nitrates and/or adequate doses of beta blockers.

II. Chronic Stable Angina
     (Classical Effort-Associated Angina)

PROCARDIA XL is indicated for the management of chronic stable angina (effort-associated angina) without evidence of vasospasm in patients who remain symptomatic despite adequate doses of beta blockers and/or organic nitrates or who cannot tolerate those agents.

In chronic stable angina (effort-associated angina), nifedipine has been effective in controlled trials of up to eight weeks duration in reducing angina frequency and increasing exercise tolerance, but confirmation of sustained effectiveness and evaluation of long-term safety in these patients is incomplete.

Controlled studies in small numbers of patients suggest concomitant use of nifedipine and beta-blocking agents may be beneficial in patients with chronic stable angina, but available information is not sufficient to predict with confidence the effects of concurrent treatment, especially in patients with compromised left ventricular function or cardiac conduction abnormalities. When introducing such concomitant therapy, care must be taken to monitor blood pressure closely, since severe hypotension can occur from the combined effects of the drugs (see WARNINGS).

III. Hypertension

PROCARDIA XL is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including PROCARDIA XL.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

PROCARDIA XL may be used alone or in combination with other antihypertensive agents.

REVATIO® (sildenafil citrate)

These highlights do not include all the information needed to use REVATIO safety and effectively. See full prescribing information for REVATIO.

4 CONTRAINDICATIONS

REVATIO is contraindicated in patients with:

  • Concomitant use of organic nitrates in any form, either regularly or intermittently, because of the greater risk of hypotension [see Warnings and Precautions (5.2)].
  • Concomitant use of riociguat, a guanylate cyclase stimulator. PDE5 inhibitors, including sildenafil, may potentiate the hypotensive effects of riociguat.
  • Known hypersensitivity to sildenafil or any component of the tablet, injection, or oral suspension. Hypersensitivity, including anaphylactic reaction, anaphylactic shock and anaphylactoid reaction, has been reported in association with the use of sildenafil.

5 WARNINGS AND PRECAUTIONS

5.1 Mortality with Pediatric Use

In a long-term trial in pediatric patients with PAH, an increase in mortality with increasing REVATIO dose was observed. Deaths were first observed after about 1 year and causes of death were typical of patients with PAH. Use of REVATIO, particularly chronic use, is not recommended in children [see Use in Specific Populations (8.4)].

5.2 Hypotension

REVATIO has vasodilatory properties, resulting in mild and transient decreases in blood pressure. Before prescribing REVATIO, carefully consider whether patients with certain underlying conditions could be adversely affected by such vasodilatory effects (e.g., patients on antihypertensive therapy or with resting hypotension [BP less than 90/50], fluid depletion, severe left ventricular outflow obstruction, or autonomic dysfunction). Monitor blood pressure when co-administering blood pressure lowering drugs with REVATIO.

5.3 Worsening Pulmonary Vascular Occlusive Disease

Pulmonary vasodilators may significantly worsen the cardiovascular status of patients with pulmonary veno-occlusive disease (PVOD). Since there are no clinical data on administration of REVATIO to patients with veno-occlusive disease, administration of REVATIO to such patients is not recommended. Should signs of pulmonary edema occur when REVATIO is administered, consider the possibility of associated PVOD.

5.4 Epistaxis

The incidence of epistaxis was 13% in patients taking REVATIO with PAH secondary to CTD. This effect was not seen in idiopathic PAH (REVATIO 3%, placebo 2%) patients. The incidence of epistaxis was also higher in REVATIO-treated patients with a concomitant oral vitamin K antagonist (9% versus 2% in those not treated with concomitant vitamin K antagonist).

The safety of REVATIO is unknown in patients with bleeding disorders or active peptic ulceration.

5.5 Visual Loss

When used to treat erectile dysfunction, non-arteritic anterior ischemic optic neuropathy (NAION), a cause of decreased vision including permanent loss of vision, has been reported postmarketing in temporal association with the use of phosphodiesterase type 5 (PDE-5) inhibitors, including sildenafil. Most, but not all, of these patients had underlying anatomic or vascular risk factors for developing NAION, including but not necessarily limited to: low cup to disc ratio ("crowded disc"), age over 50, diabetes, hypertension, coronary artery disease, hyperlipidemia and smoking. Based on published literature, the annual incidence of NAION is 2.5–11.8 cases per 100,000 males aged ≥ 50 per year in the general population. An observational study evaluated whether recent, episodic use of PDE5 inhibitors (as a class), typical of erectile dysfunction treatment, was associated with acute onset of NAION. The results suggest an approximately 2-fold increase in the risk of NAION within 5 half-lives of PDE5 inhibitor use. It is not possible to determine whether these events are related directly to the use of PDE-5 inhibitors, to the patient's underlying vascular risk factors or anatomical defects, to a combination of these factors, or to other factors. Advise patients to seek immediate medical attention in the event of a sudden loss of vision in one or both eyes while taking PDE-5 inhibitors, including REVATIO. Physicians should also discuss the increased risk of NAION with patients who have already experienced NAION in one eye, including whether such individuals could be adversely affected by use of vasodilators, such as PDE-5 inhibitors.

There are no controlled clinical data on the safety or efficacy of REVATIO in patients with retinitis pigmentosa, a minority whom have genetic disorders of retinal phosphodiesterases. Prescribe REVATIO with caution in these patients.

5.6 Hearing Loss

Cases of sudden decrease or loss of hearing, which may be accompanied by tinnitus and dizziness, have been reported in temporal association with the use of PDE-5 inhibitors, including REVATIO. In some of the cases, medical conditions and other factors were reported that may have played a role. In many cases, medical follow-up information was limited. It is not possible to determine whether these reported events are related directly to the use of REVATIO, to the patient's underlying risk factors for hearing loss, a combination of these factors, or to other factors.

Advise patients to seek prompt medical attention in the event of sudden decrease or loss of hearing while taking PDE-5 inhibitors, including REVATIO.

5.7 Combination with other PDE-5 inhibitors

Sildenafil is also marketed as VIAGRA®. The safety and efficacy of combinations of REVATIO with VIAGRA or other PDE-5 inhibitors have not been studied. Inform patients taking REVATIO not to take VIAGRA or other PDE-5 inhibitors.

5.8 Priapism

Use REVATIO with caution in patients with anatomical deformation of the penis (e.g., angulation, cavernosal fibrosis, or Peyronie's disease) or in patients who have conditions, which may predispose them to priapism (e.g., sickle cell anemia, multiple myeloma, or leukemia). In the event of an erection that persists longer than 4 hours, the patient should seek immediate medical assistance. If priapism (painful erection greater than 6 hours in duration) is not treated immediately, penile tissue damage and permanent loss of potency could result.

5.9 Vaso-occlusive Crisis in Patients with Pulmonary Hypertension Secondary to Sickle Cell Anemia

In a small, prematurely terminated study of patients with pulmonary hypertension (PH) secondary to sickle cell disease, vaso-occlusive crises requiring hospitalization were more commonly reported by patients who received REVATIO than by those randomized to placebo. The effectiveness and safety of REVATIO in the treatment of PAH secondary to sickle cell anemia has not been established.

6 ADVERSE REACTIONS

The following serious adverse events are discussed elsewhere in the labeling:

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Safety data of REVATIO in adults were obtained from the 12-week, placebo-controlled clinical study (Study 1) and an open-label extension study in 277 REVATIO-treated patients with PAH, WHO Group I [see Clinical Studies (14)].

The overall frequency of discontinuation in REVATIO-treated patients on 20 mg three times a day was 3% and was the same for the placebo group.

In Study 1, the adverse reactions that were reported by at least 3% of REVATIO-treated patients (20 mg three times a day) and were more frequent in REVATIO-treated patients than in placebo-treated patients are shown in Table 1. Adverse reactions were generally transient and mild to moderate in nature.

Table 1. Most Common Adverse Reactions in Patients with PAH in Study 1 (More Frequent in REVATIO-Treated Patients than Placebo-Treated Patients and Incidence ≥3% in REVATIO-Treated Patients)
Placebo, %
(n = 70)
REVATIO 20 mg three times a day, %
(n = 69)
Placebo-
Subtracted, %
Epistaxis 1 9 8
Headache 39 46 7
Dyspepsia 7 13 6
Flushing 4 10 6
Insomnia 1 7 6
Erythema 1 6 5
Dyspnea exacerbated 3 7 4
Rhinitis 0 4 4
Diarrhea 6 9 3
Myalgia 4 7 3
Pyrexia 3 6 3
Gastritis 0 3 3
Sinusitis 0 3 3
Paresthesia 0 3 3

At doses higher than the recommended 20 mg three times a day, there was a greater incidence of some adverse reactions including flushing, diarrhea, myalgia and visual disturbances. Visual disturbances were identified as mild and transient, and were predominately color-tinge to vision, but also increased sensitivity to light or blurred vision.

The incidence of retinal hemorrhage with REVATIO 20 mg three times a day was 1.4% versus 0% placebo and for all REVATIO doses studied was 1.9% versus 0% placebo. The incidence of eye hemorrhage at both 20 mg three times a day and at all doses studied was 1.4% for REVATIO versus 1.4% for placebo. The patients experiencing these reactions had risk factors for hemorrhage including concurrent anticoagulant therapy.

In a placebo-controlled fixed dose titration study (Study 2) of REVATIO (starting with recommended dose of 20 mg and increased to 40 mg and then 80 mg all three times a day) as an adjunct to intravenous epoprostenol in patients with PAH, the adverse reactions that were more frequent in the REVATIO + epoprostenol group than in the epoprostenol group (greater than 6% difference) are shown in Table 2 [see Clinical Studies (14)].

Table 2. Adverse Reactions (%) in patients with PAH in Study 2 (incidence in REVATIO + Epoprostenol group at least 6% greater than Epoprostenol group)
REVATIO + Epoprostenol
(n = 134)
Epoprostenol
(n = 131)
(REVATIO + Epoprostenol) minus Epoprostenol
*
includes peripheral edema
Headache 57 34 23
Edema* 25 13 14
Dyspepsia 16 2 14
Pain in extremity 17 6 11
Diarrhea 25 18 7
Nausea 25 18 7
Nasal congestion 9 2 7

REVATIO Injection

REVATIO injection was studied in a 66-patient, placebo-controlled study in patients with PAH at doses targeting plasma concentrations between 10 and 500 ng/mL (up to 8 times the exposure of the recommended dose). Adverse events with REVATIO injection were similar to those seen with oral tablets.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post approval use of sildenafil (marketed for both PAH and erectile dysfunction). Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Cardiovascular Events

In postmarketing experience with sildenafil at doses indicated for erectile dysfunction, serious cardiovascular, cerebrovascular, and vascular events, including myocardial infarction, sudden cardiac death, ventricular arrhythmia, cerebrovascular hemorrhage, transient ischemic attack, hypertension, pulmonary hemorrhage, and subarachnoid and intracerebral hemorrhages have been reported in temporal association with the use of the drug. Most, but not all, of these patients had preexisting cardiovascular risk factors. Many of these events were reported to occur during or shortly after sexual activity, and a few were reported to occur shortly after the use of sildenafil without sexual activity. Others were reported to have occurred hours to days after use concurrent with sexual activity. It is not possible to determine whether these events are related directly to sildenafil, to sexual activity, to the patient's underlying cardiovascular disease, or to a combination of these or other factors.

Nervous system

Seizure, seizure recurrence

1 INDICATIONS AND USAGE

REVATIO is indicated for the treatment of pulmonary arterial hypertension (WHO Group I) in adults to improve exercise ability and delay clinical worsening. The delay in clinical worsening was demonstrated when REVATIO was added to background epoprostenol therapy [see Clinical Studies (14)].

Studies establishing effectiveness were short-term (12 to 16 weeks), and included predominately patients with New York Heart Association (NYHA) Functional Class II–III symptoms and idiopathic etiology (71%) or associated with connective tissue disease (CTD) (25%).

Limitation of Use: Adding sildenafil to bosentan therapy does not result in any beneficial effect on exercise capacity [see Clinical Studies (14)].

TAPAZOLE® (methimazole)

These highlights do not include all the information needed to use TAPAZOLE safety and effectively. See full prescribing information for TAPAZOLE.

CONTRAINDICATIONS

TAPAZOLE is contraindicated in the presence of hypersensitivity to the drug or any of the other product components.

WARNINGS

First Trimester Use of Methimazole and Congenital Malformations

Methimazole crosses the placental membranes and can cause fetal harm, when administered in the first trimester of pregnancy. Rare instances of congenital defects, including aplasia cutis, craniofacial malformations (facial dysmorphism; choanal atresia), gastrointestinal malformations (esophageal atresia with or without tracheoesophageal fistula), omphalocele and abnormalities of the omphalomesenteric duct have occurred in infants born to mothers who received TAPAZOLE in the first trimester of pregnancy. If TAPAZOLE is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be warned of the potential hazard to the fetus.

Because of the risk for congenital malformations associated with use of TAPAZOLE in the first trimester of pregnancy, it may be appropriate to use other agents in pregnant women requiring treatment for hyperthyroidism. If TAPAZOLE is used, the lowest possible dose to control the maternal disease should be given.

Agranulocytosis

Agranulocytosis is potentially a life-threatening adverse reaction of TAPAZOLE therapy. Patients should be instructed to immediately report to their physicians any symptoms suggestive of agranulocytosis, such as fever or sore throat. Leukopenia, thrombocytopenia, and aplastic anemia (pancytopenia) may also occur. The drug should be discontinued in the presence of agranulocytosis, aplastic anemia (pancytopenia), ANCA-positive vasculitis, hepatitis, or exfoliative dermatitis and the patient's bone marrow indices should be monitored.

Liver Toxicity

Although there have been reports of hepatotoxicity (including acute liver failure) associated with TAPAZOLE, the risk of hepatotoxicity appears to be less with methimazole than with propylthiouracil, especially in the pediatric population. Symptoms suggestive of hepatic dysfunction (anorexia, pruritis, right upper quadrant pain, etc.) should prompt evaluation of liver function (bilirubin, alkaline phosphatase) and hepatocellur integrity (ALT, AST). Drug treatment should be discontinued promptly in the event of clinically significant evidence of liver abnormality including hepatic transaminase values exceeding 3 times the upper limit of normal.

Hypothyroidism

TAPAZOLE can cause hypothyroidism necessitating routine monitoring of TSH and free T4 levels with adjustments in dosing to maintain a euthyroid state. Because the drug readily crosses placental membranes, methimazole can cause fetal goiter and cretinism when administered to a pregnant woman. For this reason, it is important that a sufficient, but not excessive, dose be given during pregnancy (see PRECAUTIONS, Pregnancy).


PRECAUTIONS

General

Patients who receive methimazole should be under close surveillance and should be cautioned to report immediately any evidence of illness, particularly sore throat, skin eruptions, fever, headache, or general malaise. In such cases, white-blood-cell and differential counts should be obtained to determine whether agranulocytosis has developed. Particular care should be exercised with patients who are receiving additional drugs known to cause agranulocytosis.

Information for Patients

Patients should be advised that if they become pregnant or intend to become pregnant while taking an antithyroid drug, they should contact their physician immediately about their therapy.

Laboratory Tests

Because methimazole may cause hypoprothrombinemia and bleeding, prothrombin time should be monitored during therapy with the drug, especially before surgical procedures. Thyroid function tests should be monitored periodically during therapy. Once clinical evidence of hyperthyroidism has resolved, the finding of a rising serum TSH indicates that a lower maintenance dose of TAPAZOLE should be employed.

Drug Interactions

Anticoagulants (oral)

Due to potential inhibition of vitamin K activity by methimazole, the activity of oral anticoagulants (e.g., warfarin) may be increased; additional monitoring of PT/INR should be considered, especially before surgical procedures.

β-adrenergic blocking agents

Hyperthyroidism may cause an increased clearance of beta blockers with a high extraction ratio. A dose reduction of beta-adrenergic blockers may be needed when a hyperthyroid patient becomes euthyroid.

Digitalis glycosides

Serum digitalis levels may be increased when hyperthyroid patients on a stable digitalis glycoside regimen become euthyroid; a reduced dosage of digitalis glycosides may be needed.

Theophylline

Theophylline clearance may decrease when hyperthyroid patients on a stable theophylline regimen become euthyroid; a reduced dose of theophylline may be needed.

Carcinogenesis, Mutagenesis, Impairment of Fertility

In a 2 year study, rats were given methimazole at doses of 0.5, 3, and 18 mg/kg/day. These doses were 0.3, 2, and 12 times the 15 mg/day maximum human maintenance dose (when calculated on the basis of surface area). Thyroid hyperplasia, adenoma, and carcinoma developed in rats at the two higher doses. The clinical significance of these findings is unclear.

Pregnancy

Pregnancy Category D

See WARNINGS

If TAPAZOLE is used during the first trimester of pregnancy or if the patient becomes pregnant while taking this drug, the patient should be warned of the potential hazard to the fetus.

In pregnant women with untreated or inadequately treated Graves' disease, there is an increased risk of adverse events of maternal heart failure, spontaneous abortion, preterm birth, stillbirth and fetal or neonatal hyperthyroidism.

Because methimazole crosses placental membranes and can induce goiter and cretinism in the developing fetus, hyperthyroidism should be closely monitored in pregnant women and treatment adjusted such that a sufficient, but not excessive, dose be given during pregnancy. In many pregnant women, the thyroid dysfunction diminishes as the pregnancy proceeds; consequently, a reduction of dosage may be possible. In some instances, anti-thyroid therapy can be discontinued several weeks or months before delivery.

Due to the rare occurrence of congenital malformations associated with methimazole use, it may be appropriate to use an alternative anti-thyroid medication in pregnant women requiring treatment for hyperthyroidism particularly in the first trimester of pregnancy during organogenesis.

Given the potential maternal adverse effects of propylthiouracil (e.g., hepatotoxicity), it may be preferable to switch from propylthiouracil to TAPAZOLE for the second and third trimesters.

Nursing Mothers

Methimazole is present in breast milk. However, several studies found no effect on clinical status in nursing infants of mothers taking methimazole. A long-term study of 139 thyrotoxic lactating mothers and their infants failed to demonstrate toxicity in infants who are nursed by mothers receiving treatment with methimazole. Monitor thyroid function at frequent (weekly or biweekly) intervals.

Pediatric Use

Because of postmarketing reports of severe liver injury in pediatric patient treated with propylthiouracil, TAPAZOLE is the preferred choice when an antithyroid drug is required for a pediatric patient (see DOSAGE AND ADMINISTRATION).

ADVERSE REACTIONS

Major adverse reactions (which occur with much less frequency than the minor adverse reactions) include inhibition of myelopoieses (agranulocytosis, granulocytopenia, thrombocytopenia, and aplastic anemia), drug fever, a lupus-like syndrome, insulin autoimmune syndrome (which can result in hypoglycemic coma), hepatitis (jaundice may persist for several weeks after discontinuation of the drug), periarteritis, and hypoprothrombinemia. Nephritis occurs very rarely.

Minor adverse reactions include skin rash, urticaria, nausea, vomiting, epigastric distress, arthralgia, paresthesia, loss of taste, abnormal loss of hair, myalgia, headache, pruritus, drowsiness, neuritis, edema, vertigo, skin pigmentation, jaundice, sialadenopathy, and lymphadenopathy.

INDICATIONS AND USAGE

TAPAZOLE is indicated:

  • In patients with Graves' disease with hyperthyroidism or toxic multinodular goiter for whom surgery or radioactive iodine therapy is not an appropriate treatment option.
  • To ameliorate symptoms of hyperthyroidism in preparation for thyroidectomy or radioactive iodine therapy.

TIKOSYN® (dofetilide)

These highlights do not include all the information needed to use TIKOSYN safety and effectively. See full prescribing information for TIKOSYN.

To minimize the risk of induced arrhythmia, patients initiated or re-initiated on TIKOSYN should be placed for a minimum of 3 days in a facility that can provide calculations of creatinine clearance, continuous electrocardiographic monitoring, and cardiac resuscitation. For detailed instructions regarding dose selection, see DOSAGE AND ADMINISTRATION.

CONTRAINDICATIONS

TIKOSYN is contraindicated in patients with congenital or acquired long QT syndromes. TIKOSYN should not be used in patients with a baseline QT interval or QTc >440 msec (500 msec in patients with ventricular conduction abnormalities). TIKOSYN is also contraindicated in patients with severe renal impairment (calculated creatinine clearance <20 mL/min).

The concomitant use of verapamil or the cation transport system inhibitors cimetidine, trimethoprim (alone or in combination with sulfamethoxazole), or ketoconazole with TIKOSYN is contraindicated (see WARNINGS and PRECAUTIONS, Drug-Drug Interactions), as each of these drugs cause a substantial increase in dofetilide plasma concentrations. In addition, other known inhibitors of the renal cation transport system such as prochlorperazine, dolutegravir and megestrol should not be used in patients on TIKOSYN.

The concomitant use of hydrochlorothiazide (alone or in combinations such as with triamterene) with TIKOSYN is contraindicated (see PRECAUTIONS, Drug-Drug Interactions) because this has been shown to significantly increase dofetilide plasma concentrations and QT interval prolongation.

TIKOSYN is also contraindicated in patients with a known hypersensitivity to the drug.

WARNINGS

Ventricular Arrhythmia

TIKOSYN (dofetilide) can cause serious ventricular arrhythmias, primarily Torsade de Pointes (TdP) type ventricular tachycardia, a polymorphic ventricular tachycardia associated with QT interval prolongation. QT interval prolongation is directly related to dofetilide plasma concentration. Factors such as reduced creatinine clearance or certain dofetilide drug interactions will increase dofetilide plasma concentration. The risk of TdP can be reduced by controlling the plasma concentration through adjustment of the initial dofetilide dose according to creatinine clearance and by monitoring the ECG for excessive increases in the QT interval.

Treatment with dofetilide must therefore be started only in patients placed for a minimum of three days in a facility that can provide electrocardiographic monitoring and in the presence of personnel trained in the management of serious ventricular arrhythmias. Calculation of the creatinine clearance for all patients must precede administration of the first dose of dofetilide. For detailed instructions regarding dose selection, see DOSAGE AND ADMINISTRATION.

The risk of dofetilide induced ventricular arrhythmia was assessed in three ways in clinical studies: 1) by description of the QT interval and its relation to the dose and plasma concentration of dofetilide; 2) by observing the frequency of TdP in TIKOSYN-treated patients according to dose; 3) by observing the overall mortality rate in patients with atrial fibrillation and in patients with structural heart disease.

Relation of QT Interval to Dose

The QT interval increases linearly with increasing TIKOSYN dose (see Figures 1 and 2 in CLINICAL PHARMACOLOGY and Dose-Response and Concentration Response for Increase in QT Interval).

Frequency of Torsade de Pointes

In the supraventricular arrhythmia population (patients with AF and other supraventricular arrhythmias), the overall incidence of Torsade de Pointes was 0.8%. The frequency of TdP by dose is shown in Table 4. There were no cases of TdP on placebo.

Table 4: Summary of Torsade de Pointes in Patients Randomized to Dofetilide by Dose; Patients with Supraventricular Arrhythmias
TIKOSYN Dose
<250 mcg BID 250 mcg BID >250–500 mcg BID >500 mcg BID All Doses
Number of Patients 217 388 703 38 1346
Torsade de Pointes 0 1 (0.3%) 6 (0.9%) 4 (10.5%) 11 (0.8%)

As shown in Table 5, the rate of TdP was reduced when patients were dosed according to their renal function (see CLINICAL PHARMACOLOGY, Pharmacokinetics in Special Populations, Renal Impairment and DOSAGE AND ADMINISTRATION).

Table 5: Incidence of Torsade de Pointes Before and After Introduction of Dosing According to Renal Function
Total Before After
Population: n/N % n/N % n/N %
Supraventricular Arrhythmias   11/1346 (0.8%)   6/193 (3.1%)   5/1153 (0.4%)
DIAMOND CHF   25/762 (3.3%)   7/148 (4.7%)   18/614 (2.9%)
DIAMOND MI   7/749 (0.9%)   3/101 (3.0%)   4/648 (0.6%)
DIAMOND AF   4/249 (1.6%)   0/43 (0%)   4/206 (1.9%)

The majority of the episodes of TdP occurred within the first three days of TIKOSYN therapy (10/11 events in the studies of patients with supraventricular arrhythmias; 19/25 and 4/7 events in DIAMOND CHF and DIAMOND MI, respectively; 2/4 events in the DIAMOND AF subpopulation).

Mortality

In a pooled survival analysis of patients in the supraventricular arrhythmia population (low prevalence of structural heart disease), deaths occurred in 0.9% (12/1346) of patients receiving TIKOSYN and 0.4% (3/677) in the placebo group. Adjusted for duration of therapy, primary diagnosis, age, gender, and prevalence of structural heart disease, the point estimate of the hazard ratio for the pooled studies (TIKOSYN/placebo) was 1.1 (95% CI: 0.3, 4.3). The DIAMOND CHF and MI trials examined mortality in patients with structural heart disease (ejection fraction ≤35%). In these large, double-blind studies, deaths occurred in 36% (541/1511) of TIKOSYN patients and 37% (560/1517) of placebo patients. In an analysis of 506 DIAMOND patients with atrial fibrillation/flutter at baseline, one year mortality on TIKOSYN was 31% vs. 32% on placebo (see CLINICAL STUDIES).

Because of the small number of events, an excess mortality due to TIKOSYN cannot be ruled out with confidence in the pooled survival analysis of placebo-controlled trials in patients with supraventricular arrhythmias. However, it is reassuring that in two large placebo-controlled mortality studies in patients with significant heart disease (DIAMOND CHF/MI), there were no more deaths in TIKOSYN-treated patients than in patients given placebo (see CLINICAL STUDIES).

Drug-Drug Interactions

(see CONTRAINDICATIONS)

Because there is a linear relationship between dofetilide plasma concentration and QTc, concomitant drugs that interfere with the metabolism or renal elimination of dofetilide may increase the risk of arrhythmia (Torsade de Pointes). TIKOSYN is metabolized to a small degree by the CYP3A4 isoenzyme of the cytochrome P450 system and an inhibitor of this system could increase systemic dofetilide exposure. More important, dofetilide is eliminated by cationic renal secretion, and three inhibitors of this process have been shown to increase systemic dofetilide exposure. The magnitude of the effect on renal elimination by cimetidine, trimethoprim, and ketoconazole (all contraindicated concomitant uses with dofetilide) suggests that all renal cation transport inhibitors should be contraindicated.

Hypokalemia and Potassium-Depleting Diuretics

Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting diuretics, increasing the potential for Torsade de Pointes. Potassium levels should be within the normal range prior to administration of TIKOSYN and maintained in the normal range during administration of TIKOSYN (see DOSAGE AND ADMINISTRATION).

Use with Drugs that Prolong QT Interval and Antiarrhythmic Agents

The use of TIKOSYN in conjunction with other drugs that prolong the QT interval has not been studied and is not recommended. Such drugs include phenothiazines, cisapride, bepridil, tricyclic antidepressants, certain oral macrolides, and certain fluoroquinolones. Class I or Class III antiarrhythmic agents should be withheld for at least three half-lives prior to dosing with TIKOSYN. In clinical trials, TIKOSYN was administered to patients previously treated with oral amiodarone only if serum amiodarone levels were below 0.3 mg/L or amiodarone had been withdrawn for at least three months.


PRECAUTIONS

Renal Impairment

The overall systemic clearance of dofetilide is decreased and plasma concentration increased with decreasing creatinine clearance. The dose of TIKOSYN must be adjusted based on creatinine clearance (see DOSAGE AND ADMINISTRATION). Patients undergoing dialysis were not included in clinical studies, and appropriate dosing recommendations for these patients are unknown. There is no information about the effectiveness of hemodialysis in removing dofetilide from plasma.

Hepatic Impairment

After adjustment for creatinine clearance, no additional dose adjustment is required for patients with mild or moderate hepatic impairment. Patients with severe hepatic impairment have not been studied. TIKOSYN should be used with particular caution in these patients.

Cardiac Conduction Disturbances

Animal and human studies have not shown any adverse effects of dofetilide on conduction velocity. No effect on AV nodal conduction following TIKOSYN treatment was noted in normal volunteers and in patients with 1st degree heart block. Patients with sick sinus syndrome or with 2nd or 3rd degree heart block were not included in the Phase 3 clinical trials unless a functioning pacemaker was present. TIKOSYN has been used safely in conjunction with pacemakers (53 patients in DIAMOND studies, 136 in trials in patients with ventricular and supraventricular arrhythmias).

Information for Patients

Please refer patient to the Medication Guide.

Prior to initiation of TIKOSYN therapy, the patient should be advised to read the Medication Guide and reread it each time therapy is renewed in case the patient's status has changed. The patient should be fully instructed on the need for compliance with the recommended dosing of TIKOSYN and the potential for drug interactions, and the need for periodic monitoring of QTc and renal function to minimize the risk of serious abnormal rhythms.

Medications and Supplements

Assessment of patients' medication history should include all over-the-counter, prescription, and herbal/natural preparations with emphasis on preparations that may affect the pharmacokinetics of TIKOSYN such as cimetidine (see CONTRAINDICATIONS), trimethoprim alone or in combination with sulfamethoxazole (see WARNINGS, CONTRAINDICATIONS), prochlorperazine (see WARNINGS, CONTRAINDICATIONS), megestrol (see WARNINGS, CONTRAINDICATIONS), ketoconazole (see WARNINGS, CONTRAINDICATIONS), dolutegravir (see CONTRAINDICATIONS), hydrochlorothiazide (alone or in combinations such as with triamterene) (see CONTRAINDICATIONS), other cardiovascular drugs (especially verapamil – see CONTRAINDICATIONS), phenothiazines, and tricyclic antidepressants (see WARNINGS). If a patient is taking TIKOSYN and requires anti-ulcer therapy, omeprazole, ranitidine, or antacids (aluminum and magnesium hydroxides) should be used as alternatives to cimetidine, as these agents have no effect on the pharmacokinetics of TIKOSYN. Patients should be instructed to notify their health care providers of any change in over-the-counter, prescription, or supplement use. If a patient is hospitalized or is prescribed a new medication for any condition, the patient must inform the health care provider of ongoing TIKOSYN therapy. Patients should also check with their health care provider and/or pharmacist prior to taking a new over-the-counter preparation.

Electrolyte Imbalance

If patients experience symptoms that may be associated with altered electrolyte balance, such as excessive or prolonged diarrhea, sweating, or vomiting or loss of appetite or thirst, these conditions should immediately be reported to their health care provider.

Dosing Schedule

Patients should be instructed NOT to double the next dose if a dose is missed. The next dose should be taken at the usual time.

Drug/Laboratory Test Interactions

None known.

Drug-Drug Interactions

Cimetidine

(see WARNINGS, CONTRAINDICATIONS) Concomitant use of cimetidine is contraindicated. Cimetidine at 400 mg BID (the usual prescription dose) co-administered with TIKOSYN (500 mcg BID) for 7 days has been shown to increase dofetilide plasma levels by 58%. Cimetidine at doses of 100 mg BID (OTC dose) resulted in a 13% increase in dofetilide plasma levels (500 mcg single dose). No studies have been conducted at intermediate doses of cimetidine. If a patient requires TIKOSYN and anti-ulcer therapy, it is suggested that omeprazole, ranitidine, or antacids (aluminum and magnesium hydroxides) be used as alternatives to cimetidine, as these agents have no effect on the pharmacokinetic profile of TIKOSYN.

Verapamil

(see CONTRAINDICATIONS) Concomitant use of verapamil is contraindicated. Co-administration of TIKOSYN with verapamil resulted in increases in dofetilide peak plasma levels of 42%, although overall exposure to dofetilide was not significantly increased. In an analysis of the supraventricular arrhythmia and DIAMOND patient populations, the concomitant administration of verapamil with dofetilide was associated with a higher occurrence of Torsade de Pointes.

Ketoconazole

(see WARNINGS, CONTRAINDICATIONS) Concomitant use of ketoconazole is contraindicated. Ketoconazole at 400 mg daily (the maximum approved prescription dose) co-administered with TIKOSYN (500 mcg BID) for 7 days has been shown to increase dofetilide Cmax by 53% in males and 97% in females, and AUC by 41% in males and 69% in females.

Trimethoprim Alone or in Combination with Sulfamethoxazole

(see WARNINGS, CONTRAINDICATIONS) Concomitant use of trimethoprim alone or in combination with sulfamethoxazole is contraindicated. Trimethoprim 160 mg in combination with 800 mg sulfamethoxazole co-administered BID with TIKOSYN (500 mcg BID) for 4 days has been shown to increase dofetilide AUC by 103% and Cmax by 93%.

Hydrochlorothiazide (HCTZ) Alone or in Combination with Triamterene

(see CONTRAINDICATIONS) Concomitant use of HCTZ alone or in combination with triamterene is contraindicated. HCTZ 50 mg QD or HCTZ/triamterene 50/100 mg QD was co-administered with TIKOSYN (500 mcg BID) for 5 days (following 2 days of diuretic use at half dose). In patients receiving HCTZ alone, dofetilide AUC increased by 27% and Cmax by 21%. However, the pharmacodynamic effect increased by 197% (QTc increase over time) and by 95% (maximum QTc increase). In patients receiving HCTZ in combination with triamterene, dofetilide AUC increased by 30% and Cmax by 16%. However, the pharmacodynamic effect increased by 190% (QTc increase over time) and by 84% (maximum QTc increase). The pharmacodynamic effects can be explained by a combination of the increase in dofetilide exposure and the reductions in serum potassium. In the DIAMOND trials, 1252 patients were treated with TIKOSYN and diuretics concomitantly, of whom 493 died compared to 508 deaths among the 1248 patients receiving placebo and diuretics. Of the 229 patients who had potassium depleting diuretics added to their concomitant medications in the DIAMOND trials, the patients on TIKOSYN had a non-significantly reduced relative risk for death of 0.68 (95% CI: 0.376, 1.230).

Potential Drug Interactions

Dofetilide is eliminated in the kidney by cationic secretion. Inhibitors of renal cationic secretion are contraindicated with TIKOSYN. In addition, drugs that are actively secreted via this route (e.g., triamterene, metformin, and amiloride) should be co-administered with care as they might increase dofetilide levels.

Dofetilide is metabolized to a small extent by the CYP3A4 isoenzyme of the cytochrome P450 system. Inhibitors of the CYP3A4 isoenzyme could increase systemic dofetilide exposure. Inhibitors of this isoenzyme (e.g., macrolide antibiotics, azole antifungal agents, protease inhibitors, serotonin reuptake inhibitors, amiodarone, cannabinoids, diltiazem, grapefruit juice, nefazadone, norfloxacin, quinine, zafirlukast) should be cautiously co-administered with TIKOSYN as they can potentially increase dofetilide levels. Dofetilide is not an inhibitor of CYP3A4 nor of other cytochrome P450 isoenzymes (e.g., CYP2C9, CYP2D6) and is not expected to increase levels of drugs metabolized by CYP3A4.

Other Drug Interaction Information

Digoxin

Studies in healthy volunteers have shown that TIKOSYN does not affect the pharmacokinetics of digoxin. In patients, the concomitant administration of digoxin with dofetilide was associated with a higher occurrence of Torsade de Pointes. It is not clear whether this represents an interaction with TIKOSYN or the presence of more severe structural heart disease in patients on digoxin; structural heart disease is a known risk factor for arrhythmia. No increase in mortality was observed in patients taking digoxin as concomitant medication.

Other Drugs

In healthy volunteers, amlodipine, phenytoin, glyburide, ranitidine, omeprazole, hormone replacement therapy (a combination of conjugated estrogens and medroxyprogesterone), antacid (aluminum and magnesium hydroxides), and theophylline did not affect the pharmacokinetics of TIKOSYN. In addition, studies in healthy volunteers have shown that TIKOSYN does not affect the pharmacokinetics or pharmacodynamics of warfarin, or the pharmacokinetics of propranolol (40 mg twice daily), phenytoin, theophylline, or oral contraceptives.

Population pharmacokinetic analyses were conducted on plasma concentration data from 1445 patients in clinical trials to examine the effects of concomitant medications on clearance or volume of distribution of dofetilide. Concomitant medications were grouped as ACE inhibitors, oral anticoagulants, calcium channel blockers, beta blockers, cardiac glycosides, inducers of CYP3A4, substrates and inhibitors of CYP3A4, substrates and inhibitors of P-glycoprotein, nitrates, sulphonylureas, loop diuretics, potassium sparing diuretics, thiazide diuretics, substrates and inhibitors of tubular organic cation transport, and QTc-prolonging drugs. Differences in clearance between patients on these medications (at any occasion in the study) and those off medications varied between -16% and +3%. The mean clearances of dofetilide were 16% and 15% lower in patients on thiazide diuretics and inhibitors of tubular organic cation transport, respectively.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Dofetilide had no genotoxic effects, with or without metabolic activation, based on the bacterial mutation assay and tests of cytogenetic aberrations in vivo in mouse bone marrow and in vitro in human lymphocytes. Rats and mice treated with dofetilide in the diet for two years showed no evidence of an increased incidence of tumors compared to controls. The highest dofetilide dose administered for 24 months was 10 mg/kg/day to rats and 20 mg/kg/day to mice. Mean dofetilide AUCs(0–24hr) at these doses were about 26 and 10 times, respectively, the maximum likely human AUC.

There was no effect on mating or fertility when dofetilide was administered to male and female rats at doses as high as 1.0 mg/kg/day, a dose that would be expected to provide a mean dofetilide AUC(0–24hr) about 3 times the maximum likely human AUC. Increased incidences of testicular atrophy and epididymal oligospermia and a reduction in testicular weight were, however, observed in other studies in rats. Reduced testicular weight and increased incidence of testicular atrophy were also consistent findings in dogs and mice. The no effect doses for these findings in chronic administration studies in these 3 species (3, 0.1, and 6 mg/kg/day) were associated with mean dofetilide AUCs that were about 4, 1.3, and 3 times the maximum likely human AUC, respectively.

Pregnancy

Dofetilide has been shown to adversely affect in utero growth and survival of rats and mice when orally administered during organogenesis at doses of 2 or more mg/kg/day. Other than an increased incidence of non-ossified 5th metacarpal, and the occurrence of hydroureter and hydronephroses at doses as low as 1 mg/kg/day in the rat, structural anomalies associated with drug treatment were not observed in either species at doses below 2 mg/kg/day. The clearest drug-effect associations were for sternebral and vertebral anomalies in both species; cleft palate, adactyly, levocardia, dilation of cerebral ventricles, hydroureter, hydronephroses, and unossified metacarpal in the rat; and increased incidence of unossified calcaneum in the mouse. The "no observed adverse effect dose" in both species was 0.5 mg/kg/day. The mean dofetilide AUCs(0–24hr) at this dose in the rat and mouse are estimated to be about equal to the maximum likely human AUC and about half the likely human AUC, respectively. There are no adequate and well controlled studies in pregnant women. Therefore, dofetilide should only be administered to pregnant women where the benefit to the patient justifies the potential risk to the fetus.

Nursing Mothers

There is no information on the presence of dofetilide in breast milk. Patients should be advised not to breast-feed an infant if they are taking TIKOSYN.

Geriatric Use

Of the total number of patients in clinical studies of TIKOSYN, 46% were 65 to 89 years old. No overall differences in safety, effect on QTc, or effectiveness were observed between elderly and younger patients. Because elderly patients are more likely to have decreased renal function with a reduced creatinine clearance, care must be taken in dose selection (see DOSAGE AND ADMINISTRATION).

Use in Women

Female patients constituted 32% of the patients in the placebo-controlled trials of TIKOSYN. As with other drugs that cause Torsade de Pointes, TIKOSYN was associated with a greater risk of Torsade de Pointes in female patients than in male patients. During the TIKOSYN clinical development program, the risk of Torsade de Pointes in females was approximately 3 times the risk in males. Unlike Torsade de Pointes, the incidence of other ventricular arrhythmias was similar in female patients receiving TIKOSYN and patients receiving placebo. Although no study specifically investigated this risk, in post-hoc analyses, no increased mortality was observed in females on TIKOSYN compared to females on placebo.

Pediatric Use

The safety and effectiveness of TIKOSYN in children (<18 years old) has not been established.

ADVERSE REACTIONS

The TIKOSYN clinical program involved approximately 8,600 patients in 130 clinical studies of normal volunteers and patients with supraventricular and ventricular arrhythmias. TIKOSYN was administered to 5,194 patients, including two large, placebo-controlled mortality trials (DIAMOND CHF and DIAMOND MI) in which 1,511 patients received TIKOSYN for up to three years.

In the following section, adverse reaction data for cardiac arrhythmias and non-cardiac adverse reactions are presented separately for patients included in the supraventricular arrhythmia development program and for patients included in the DIAMOND CHF and MI mortality trials (see CLINICAL STUDIES, Safety in Patients with Structural Heart Disease, DIAMOND Studies, for a description of these trials).

In studies of patients with supraventricular arrhythmias, a total of 1,346 and 677 patients were exposed to TIKOSYN and placebo for 551 and 207 patient years, respectively. A total of 8.7% of patients in the dofetilide groups were discontinued from clinical trials due to adverse events compared to 8.0% in the placebo groups. The most frequent reason for discontinuation (>1%) was ventricular tachycardia (2.0% on dofetilide vs. 1.3% on placebo). The most frequent adverse events were headache, chest pain, and dizziness.

Serious Arrhythmias and Conduction Disturbances

Torsade de Pointes is the only arrhythmia that showed a dose-response relationship to TIKOSYN treatment. It did not occur in placebo treated patients. The incidence of Torsade de Pointes in patients with supraventricular arrhythmias was 0.8% (11/1346) (see WARNINGS). The incidence of Torsade de Pointes in patients who were dosed according to the recommended dosing regimen (see DOSAGE AND ADMINISTRATION) was 0.8% (4/525). Table 6 shows the frequency by randomized dose of serious arrhythmias and conduction disturbances reported as adverse events in patients with supraventricular arrhythmias.

Table 6: Incidence of Serious Arrhythmias and Conduction Disturbances in Patients with Supraventricular Arrhythmias
TIKOSYN Dose Placebo
Arrhythmia event: <250 mcg BID
N=217
250 mcg BID
N=388
>250–500 mcg BID
N=703
>500 mcg BID
N=38
N=677
*
Patients with more than one arrhythmia are counted only once in this category.
Ventricular arrhythmias and ventricular tachycardia include all cases of Torsade de Pointes.
Ventricular arrhythmias*  3.7% 2.6% 3.4% 15.8% 2.7%
  Ventricular fibrillation 0 0.3% 0.4% 2.6% 0.1%
  Ventricular tachycardia 3.7% 2.6% 3.3% 13.2% 2.5%
    Torsade de Pointes 0 0.3% 0.9% 10.5% 0
Various forms of block
  AV block 0.9% 1.5% 0.4% 0 0.3%
  Bundle branch block 0 0.5% 0.1% 0 0.1%
  Heart block 0 0.5% 0.1% 0 0.1%

In the DIAMOND trials, a total of 1,511 patients were exposed to TIKOSYN for 1757 patient years. The incidence of Torsade de Pointes was 3.3% in CHF patients and 0.9% in patients with a recent MI.

Table 7 shows the incidence of serious arrhythmias and conduction disturbances reported as adverse events in the DIAMOND subpopulation that had AF at entry to these trials.

Table 7: Incidence of Serious Arrhythmias and Conduction Disturbances in Patients with AF at Entry to the DIAMOND Studies
TIKOSYN Placebo
N=249 N=257
*
Patients with more than one arrhythmia are counted only once in this category.
Ventricular arrhythmias and ventricular tachycardia include all cases of Torsade de Pointes.
Ventricular arrhythmias*  14.5% 13.6%
  Ventricular fibrillation 4.8% 3.1%
  Ventricular tachycardia 12.4% 11.3%
    Torsade de Pointes 1.6% 0
Various forms of block
  AV block 0.8% 2.7%
  (Left) bundle branch block 0 0.4%
  Heart block 1.2% 0.8%

Other Adverse Reactions

Table 8 presents other adverse events reported with a frequency of >2% on TIKOSYN and reported numerically more frequently on TIKOSYN than on placebo in the studies of patients with supraventricular arrhythmias.

Table 8: Frequency of Adverse Events Occurring at >2% on TIKOSYN, and Numerically More Frequently on TIKOSYN than Placebo in Patients with Supraventricular Arrhythmias
TIKOSYN Placebo
Adverse Event % %
        
headache 11 9
chest pain 10 7
dizziness 8 6
respiratory tract infection 7 5
dyspnea 6 5
nausea 5 4
flu syndrome 4 2
insomnia 4 3
accidental injury 3 1
back pain 3 2
procedure (medical/surgical/health service) 3 2
diarrhea 3 2
rash 3 2
abdominal pain 3 2

Adverse events reported at a rate >2% but no more frequently on TIKOSYN than on placebo were: angina pectoris, anxiety, arthralgia, asthenia, atrial fibrillation, complications (application, injection, incision, insertion, or device), hypertension, pain, palpitation, peripheral edema, supraventricular tachycardia, sweating, urinary tract infection, ventricular tachycardia.

The following adverse events have been reported with a frequency of ≤2% and numerically more frequently with TIKOSYN than placebo in patients with supraventricular arrhythmias: angioedema, bradycardia, cerebral ischemia, cerebrovascular accident, edema, facial paralysis, flaccid paralysis, heart arrest, increased cough, liver damage, migraine, myocardial infarct, paralysis, paresthesia, sudden death, and syncope.

The incidences of clinically significant laboratory test abnormalities in patients with supraventricular arrhythmias were similar for patients on TIKOSYN and those on placebo. No clinically relevant effects were noted in serum alkaline phosphatase, serum GGT, LDH, AST, ALT, total bilirubin, total protein, blood urea nitrogen, creatinine, serum electrolytes (calcium, chloride, glucose, magnesium, potassium, sodium), or creatine kinase. Similarly, no clinically relevant effects were observed in hematologic parameters.

In the DIAMOND population, adverse events other than those related to the post-infarction and heart failure patient population were generally similar to those seen in the supraventricular arrhythmia groups.

INDICATIONS AND USAGE

Maintenance of Normal Sinus Rhythm (Delay in AF/AFl Recurrence)

TIKOSYN is indicated for the maintenance of normal sinus rhythm (delay in time to recurrence of atrial fibrillation/atrial flutter [AF/AFl]) in patients with atrial fibrillation/atrial flutter of greater than one week duration who have been converted to normal sinus rhythm. Because TIKOSYN can cause life threatening ventricular arrhythmias, it should be reserved for patients in whom atrial fibrillation/atrial flutter is highly symptomatic.

In general, antiarrhythmic therapy for atrial fibrillation/atrial flutter aims to prolong the time in normal sinus rhythm. Recurrence is expected in some patients (see CLINICAL STUDIES).

Conversion of Atrial Fibrillation/Flutter

TIKOSYN is indicated for the conversion of atrial fibrillation and atrial flutter to normal sinus rhythm.

TIKOSYN has not been shown to be effective in patients with paroxysmal atrial fibrillation.