Medical Information
United States

In order to provide you with relevant and meaningful content we need to know more about you.

Please choose the category that best describes you.

This content is intended for U.S. Healthcare Professionals. Would you like to proceed?

SYNERCID® Warnings and Precautions (quinupristin, dalfopristin)


Drug Interactions

In vitro drug interaction studies have demonstrated that Synercid significantly inhibits cytochrome P450 3A4 metabolism of cyclosporin A, midazolam, nifedipine and terfenadine. In addition, 24 subjects given Synercid 7.5 mg/kg q8h for 2 days and 300 mg of cyclosporine on day 3 showed an increase of 63% in the AUC of cyclosporine, an increase of 30% in the Cmax of cyclosporine, a 77% increase in the t1/2 of cyclosporine, and, a decrease of 34% in the clearance of cyclosporine. Therapeutic level monitoring of cyclosporine should be performed when cyclosporine must be used concomitantly with Synercid.

It is reasonable to expect that the concomitant administration of Synercid and other drugs primarily metabolized by the cytochrome P450 3A4 enzyme system may likely result in increased plasma concentrations of these drugs that could increase or prolong their therapeutic effect and/or increase adverse reactions. (See Table below.) Therefore, coadministration of Synercid with drugs which are cytochrome P450 3A4 substrates and possess a narrow therapeutic window requires caution and monitoring of these drugs (e.g., cyclosporine), whenever possible. Concomitant medications metabolized by the cytochrome P450 3A4 enzyme system that may prolong the QTc interval should be avoided.

Concomitant administration of Synercid and nifedipine (repeated oral doses) and midazolam (intravenous bolus dose) in healthy volunteers led to elevated plasma concentrations of these drugs. The Cmax increased by 18% and 14% (median values) and the AUC increased by 44% and 33% for nifedipine and midazolam, respectively.

Table 2: Selected Drugs That Are Predicted to Have Plasma Concentrations Increased by Synercid *
This list of drugs is not all inclusive.
Antihistamines: astemizole, terfenadine
Anti-HIV (NNRTIs and Protease inhibitors): delavirdine, nevirapine, indinavir, ritonavir
Antineoplastic agents: vinca alkaloids (e.g., vinblastine), docetaxel, paclitaxel
Benzodiazepines: midazolam, diazepam
Calcium channel blockers: dihydropyridines (e.g., nifedipine), verapamil, diltiazem
Cholesterol-lowering agents: HMG-CoA reductase inhibitors (e.g., lovastatin)
GI motility agents: cisapride
Immunosuppressive agents: cyclosporine, tacrolimus
Steroids: methylprednisolone
Other: carbamazepine, quinidine, lidocaine, disopyramide

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Synercid, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.



Prescribing Synercid in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Venous Irritation

Following completion of a peripheral infusion, the vein should be flushed with 5% Dextrose in Water solution to minimize venous irritation. DO NOT FLUSH with saline or heparin after Synercid administration because of incompatibility concerns.

If moderate to severe venous irritation occurs following peripheral administration of Synercid diluted in 250 mL of Dextrose 5% in water, consideration should be given to increasing the infusion volume to 500 or 750 mL, changing the infusion site, or infusing by a peripherally inserted central catheter (PICC) or a central venous catheter. In clinical trials, concomitant administration of hydrocortisone or diphenhydramine did not appear to alleviate venous pain or inflammation.

Rate of Infusion

In animal studies toxicity was higher when Synercid was administered as a bolus compared to slow infusion. However, the safety of an intravenous bolus of Synercid has not been studied in humans. Clinical trial experience has been exclusively with an intravenous duration of 60 minutes and, thus, other infusion rates cannot be recommended.


Episodes of arthralgia and myalgia, some severe, have been reported in patients treated with Synercid. In some patients, improvement has been noted with a reduction in dose frequency to q12h. In those patients available for follow-up, treatment discontinuation has been followed by resolution of symptoms. The etiology of these myalgias and arthralgias is under investigation.


The use of antibiotics may promote the overgrowth of nonsusceptible organisms. Should superinfection occur during therapy, appropriate measures should be taken.


Elevations of total bilirubin greater than 5 times the upper limit of normal were noted in approximately 25% of patients in the non-comparative studies. (See ADVERSE REACTIONS: Non-Comparative Trials.) In some patients, isolated hyperbilirubinemia (primarily conjugated) can occur during treatment, possibly resulting from competition between Synercid and bilirubin for excretion. Of note, in the comparative trials, elevations in ALT and AST occurred at a similar frequency in both the Synercid and comparator groups.

Information for Patients

Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

Patients should be counseled that antibacterial drugs including Synercid should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Synercid is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Synercid or other antibacterial drugs in the future.

Drug Interactions

In vitro drug interaction studies have shown that Synercid significantly inhibits cytochrome P450 3A4. (See WARNINGS.)

Synercid does not significantly inhibit human cytochrome P450 1A2, 2A6, 2C9, 2C19, 2D6, or 2E1. Therefore, clinical interactions with drugs metabolized by these cytochrome P450 isoenzymes are not expected.

A drug interaction between Synercid and digoxin cannot be excluded but is unlikely to occur via CYP3A4 enzyme inhibition. Synercid has shown in vitro activity (MICs of 0.25 mcg/mL when tested on two strains) against Eubacterium lentum. Digoxin is metabolized in part by bacteria in the gut and as such, a drug interaction based on Synercid's inhibition of digoxin's gut metabolism (by Eubacterium lentum) may be possible.

In vitro combination testing of Synercid with aztreonam, cefotaxime, ciprofloxacin, and gentamicin, against Enterobacteriaceae and Pseudomonas aeruginosa did not show antagonism.

In vitro combination testing of Synercid with prototype drugs of the following classes: aminoglycosides (gentamicin), β-lactams (cefepime, ampicillin, and amoxicillin), glycopeptides (vancomycin), quinolones (ciprofloxacin), tetracyclines (doxycycline) and also chloramphenicol against enterococci and staphylococci did not show antagonism.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term carcinogenicity studies in animals have not been conducted with Synercid. Five genetic toxicity tests were performed. Synercid, dalfopristin, and quinupristin were tested in the bacterial reverse mutation assay, the Chinese hamster ovary cell HGPRT gene mutation assay, the unscheduled DNA synthesis assay in rat hepatocytes, the Chinese hamster ovary cell chromosome aberration assay, and the mouse micronucleus assay in bone marrow. Dalfopristin was associated with the production of structural chromosome aberrations when tested in the Chinese hamster ovary cell chromosome aberration assay. Synercid and quinupristin were negative in this assay. Synercid, dalfopristin, and quinupristin were all negative in the other four genetic toxicity assays.

No impairment of fertility or perinatal/postnatal development was observed in rats at doses up to 12 to 18 mg/kg (approximately 0.3 to 0.4 times the human dose based on body-surface area).


Teratogenic Effects

Reproductive studies have been performed in mice at doses up to 40 mg/kg/day (approximately half the human dose based on body-surface area), in rats at doses up to 120 mg/kg/day (approximately 2.5 times the human dose based on body-surface area), and in rabbits at doses up to 12 mg/kg/day (approximately half the human dose based on body-surface area) and have revealed no evidence of impaired fertility or harm to the fetus due to Synercid.

There are, however, no adequate and well-controlled studies with Synercid in pregnant women. Because animal reproduction studies are not always predictive of the human response, this drug should be used during pregnancy only if clearly needed.

Nursing Mothers

In lactating rats, Synercid was excreted in milk. It is not known whether Synercid is excreted in human breast milk. Because many drugs are excreted in human milk, caution should be exercised when Synercid is administered to a nursing woman.

Hepatic Insufficiency

Following a single 1-hour infusion of Synercid (7.5 mg/kg) to patients with hepatic insufficiency, plasma concentrations were significantly increased. (See CLINICAL PHARMACOLOGY: Special Populations.) However, the effect of dose reduction or increase in dosing interval on the pharmacokinetics of Synercid in these patients has not been studied. Therefore, no recommendations can be made at this time regarding the appropriate dose modification.

Pediatric Use

Synercid has been used in a limited number of pediatric patients under emergency-use conditions at a dose of 7.5 mg/kg q8h or q12h. However, the safety and effectiveness of Synercid in patients under 16 years of age have not been established.

Geriatric Use

In phase 3 comparative trials of Synercid, 37% of patients (n=404) were ≥65 years of age, of which 145 were ≥75 years of age. In the phase 3 non-comparative trials, 29% of patients (n=346) were ≥65 years of age, of which 112 were ≥75 years of age. There were no apparent differences in the frequency, type, or severity of related adverse reactions including cardiovascular events between elderly and younger individuals.

Did you find an answer to your question? Yes No
Didn’t find what you were looking for? Contact us.
Report Adverse Event