Medical Information
United States

In order to provide you with relevant and meaningful content we need to know more about you.

Please choose the category that best describes you.

This content is intended for U.S. Healthcare Professionals. Would you like to proceed?

If you provide additional keywords, you may be able to browse through our database of Scientific Response Documents.

Our scientific content is evidence-based, scientifically balanced and non-promotional. It undergoes rigorous internal medical review and is updated regularly to reflect new information.

RAPAMUNE®Adverse Reactions (sirolimus)


The following adverse reactions are discussed in greater detail in other sections of the label.

The most common (≥30%) adverse reactions observed with Rapamune in clinical studies for organ rejection prophylaxis in recipients of renal transplantation are: peripheral edema, hypertriglyceridemia, hypertension, hypercholesterolemia, creatinine increased, constipation, abdominal pain, diarrhea, headache, fever, urinary tract infection, anemia, nausea, arthralgia, pain, and thrombocytopenia.

The most common (≥20%) adverse reactions observed with Rapamune in the clinical study for the treatment of LAM are: stomatitis, diarrhea, abdominal pain, nausea, nasopharyngitis, acne, chest pain, peripheral edema, upper respiratory tract infection, headache, dizziness, myalgia, and hypercholesterolemia.

The following adverse reactions resulted in a rate of discontinuation of >5% in clinical trials for renal transplant rejection prophylaxis: creatinine increased, hypertriglyceridemia, and TTP. In patients with LAM, 11% of subjects discontinued due to adverse reactions, with no single adverse reaction leading to discontinuation in more than one patient being treated with Rapamune.

6.1 Clinical Studies Experience in Prophylaxis of Organ Rejection Following Renal Transplantation

The safety and efficacy of Rapamune Oral Solution for the prevention of organ rejection following renal transplantation were assessed in two randomized, double-blind, multicenter, controlled trials [see Clinical Studies (14.1)]. The safety profiles in the two studies were similar.

The incidence of adverse reactions in the randomized, double-blind, multicenter, placebo-controlled trial (Study 2) in which 219 renal transplant patients received Rapamune Oral Solution 2 mg/day, 208 received Rapamune Oral Solution 5 mg/day, and 124 received placebo is presented in Table 1 below. The study population had a mean age of 46 years (range 15 to 71 years), the distribution was 67% male, and the composition by race was: White (78%), Black (11%), Asian (3%), Hispanic (2%), and Other (5%). All patients were treated with cyclosporine and corticosteroids. Data (≥ 12 months post-transplant) presented in the following table show the adverse reactions that occurred in at least one of the Rapamune treatment groups with an incidence of ≥20%.

The safety profile of the tablet did not differ from that of the oral solution formulation [see Clinical Studies (14.1)].

In general, adverse reactions related to the administration of Rapamune were dependent on dose/concentration. Although a daily maintenance dose of 5 mg, with a loading dose of 15 mg, was shown to be safe and effective, no efficacy advantage over the 2 mg dose could be established for renal transplant patients. Patients receiving 2 mg of Rapamune Oral Solution per day demonstrated an overall better safety profile than did patients receiving 5 mg of Rapamune Oral Solution per day.

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in one clinical trial of a drug cannot be directly compared with rates in the clinical trials of the same or another drug and may not reflect the rates observed in practice.

Adverse Reaction–––Rapamune Oral Solution–––
2 mg/day
(n = 218)
5 mg/day
(n = 208)
(n = 124)
Patients received cyclosporine and corticosteroids.
Peripheral edema545848
Creatinine increased394038
Abdominal pain293630
Urinary tract infection263326

The following adverse reactions were reported less frequently (≥3%, but <20%)

  • Body as a Whole – Sepsis, lymphocele, herpes zoster, herpes simplex.
  • Cardiovascular – Venous thromboembolism (including pulmonary embolism, deep venous thrombosis), tachycardia.
  • Digestive System – Stomatitis.
  • Hematologic and Lymphatic System – Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS), leukopenia.
  • Metabolic/Nutritional – Abnormal healing, increased lactic dehydrogenase (LDH), hypokalemia, diabetes mellitus.
  • Musculoskeletal System – Bone necrosis.
  • Respiratory System – Pneumonia, epistaxis.
  • Skin – Melanoma, squamous cell carcinoma, basal cell carcinoma.
  • Urogenital System – Pyelonephritis, decline in renal function (creatinine increased) in long-term combination of cyclosporine with Rapamune [see Warnings and Precautions (5.8)], ovarian cysts, menstrual disorders (including amenorrhea and menorrhagia).

Less frequently (<3%) occurring adverse reactions included: lymphoma/post-transplant lymphoproliferative disorder, mycobacterial infections (including M. tuberculosis), pancreatitis, cytomegalovirus (CMV), and Epstein-Barr virus.

Increased Serum Cholesterol and Triglycerides

The use of Rapamune in renal transplant patients was associated with increased serum cholesterol and triglycerides that may require treatment.

In Studies 1 and 2, in de novo renal transplant patients who began the study with fasting, total serum cholesterol <200 mg/dL or fasting, total serum triglycerides <200 mg/dL, there was an increased incidence of hypercholesterolemia (fasting serum cholesterol >240 mg/dL) or hypertriglyceridemia (fasting serum triglycerides >500 mg/dL), respectively, in patients receiving both Rapamune 2 mg and Rapamune 5 mg compared with azathioprine and placebo controls.

Treatment of new-onset hypercholesterolemia with lipid-lowering agents was required in 42–52% of patients enrolled in the Rapamune arms of Studies 1 and 2 compared with 16% of patients in the placebo arm and 22% of patients in the azathioprine arm. In other Rapamune renal transplant studies, up to 90% of patients required treatment for hyperlipidemia and hypercholesterolemia with anti-lipid therapy (e.g., statins, fibrates). Despite anti-lipid management, up to 50% of patients had fasting serum cholesterol levels >240 mg/dL and triglycerides above recommended target levels [see Warnings and Precautions (5.7)].

Abnormal Healing

Abnormal healing events following transplant surgery include fascial dehiscence, incisional hernia, and anastomosis disruption (e.g., wound, vascular, airway, ureteral, biliary).


Table 2 below summarizes the incidence of malignancies in the two controlled trials (Studies 1 and 2) for the prevention of acute rejection [see Clinical Studies (14.1)].

At 24 months (Study 1) and 36 months (Study 2) post-transplant, there were no significant differences among treatment groups.

Rapamune Oral Solution
2 mg/day
Rapamune Oral Solution
5 mg/day
2–3 mg/kg/day
MalignancyStudy 1
(n = 284)
Study 2
(n = 227)
Study 1
(n = 274)
Study 2
(n = 219)
Study 1
(n = 161)
Study 2
(n = 130)
Patients received cyclosporine and corticosteroids.
Includes patients who prematurely discontinued treatment.
Patients may be counted in more than one category.
Lymphoma/lymphoproliferative disease0.
Skin Carcinoma
  Any Squamous Cell0.
  Any Basal Cell0.
  Miscellaneous/Not Specified0.
Other Malignancy1.

6.2 Rapamune Following Cyclosporine Withdrawal

The incidence of adverse reactions was determined through 36 months in a randomized, multicenter, controlled trial (Study 3) in which 215 renal transplant patients received Rapamune as a maintenance regimen following cyclosporine withdrawal, and 215 patients received Rapamune with cyclosporine therapy [see Clinical Studies (14.2)]. All patients were treated with corticosteroids. The safety profile prior to randomization (start of cyclosporine withdrawal) was similar to that of the 2 mg Rapamune groups in Studies 1 and 2.

Following randomization (at 3 months), patients who had cyclosporine eliminated from their therapy experienced higher incidences of the following adverse reactions: abnormal liver function tests (including increased AST/SGOT and increased ALT/SGPT), hypokalemia, thrombocytopenia, and abnormal healing. Conversely, the incidence of the following adverse events was higher in patients who remained on cyclosporine than those who had cyclosporine withdrawn from therapy: hypertension, cyclosporine toxicity, increased creatinine, abnormal kidney function, toxic nephropathy, edema, hyperkalemia, hyperuricemia, and gum hyperplasia. Mean systolic and diastolic blood pressure improved significantly following cyclosporine withdrawal.


The incidence of malignancies in Study 3 [see Clinical Studies (14.2)] is presented in Table 3.

In Study 3, the incidence of lymphoma/lymphoproliferative disease was similar in all treatment groups. The overall incidence of malignancy was higher in patients receiving Rapamune plus cyclosporine compared with patients who had cyclosporine withdrawn. Conclusions regarding these differences in the incidence of malignancy could not be made because Study 3 was not designed to consider malignancy risk factors or systematically screen subjects for malignancy. In addition, more patients in the Rapamune with cyclosporine group had a pre-transplantation history of skin carcinoma.

(n = 95)
Rapamune with Cyclosporine Therapy
(n = 215)
Rapamune Following Cyclosporine Withdrawal
(n = 215)
Patients received cyclosporine and corticosteroids.
Includes patients who prematurely discontinued treatment.
Patients may be counted in more than one category.
Lymphoma/lymphoproliferative disease1.11.40.5
Skin Carcinoma
  Any Squamous Cell3.23.32.3
  Any Basal Cell3.26.52.3
  Miscellaneous/Not Specified1.10.90.0
Other Malignancy3.23.31.9

6.3 High-Immunologic Risk Renal Transplant Patients

Safety was assessed in 224 patients who received at least one dose of sirolimus with cyclosporine [see Clinical Studies (14.3)]. Overall, the incidence and nature of adverse reactions was similar to those seen in previous combination studies with Rapamune. The incidence of malignancy was 1.3% at 12 months.

6.4 Conversion from Calcineurin Inhibitors to Rapamune in Maintenance Renal Transplant Population

The safety and efficacy of conversion from calcineurin inhibitors to Rapamune in maintenance renal transplant population have not been established [see Clinical Studies (14.4)]. In a study evaluating the safety and efficacy of conversion from calcineurin inhibitors to Rapamune (initial target sirolimus concentrations of 12–20 ng/mL, and then 8–20 ng/mL, by chromatographic assay) in maintenance renal transplant patients, enrollment was stopped in the subset of patients (n = 87) with a baseline glomerular filtration rate of less than 40 mL/min. There was a higher rate of serious adverse events, including pneumonia, acute rejection, graft loss and death, in this stratum of the Rapamune treatment arm.

The subset of patients with a baseline glomerular filtration rate of less than 40 mL/min had 2 years of follow-up after randomization. In this population, the rate of pneumonia was 25.9% (15/58) versus 13.8% (4/29), graft loss (excluding death with functioning graft loss) was 22.4% (13/58) versus 31.0% (9/29), and death was 15.5% (9/58) versus 3.4% (1/29) in the sirolimus conversion group and CNI continuation group, respectively.

In the subset of patients with a baseline glomerular filtration rate of greater than 40 mL/min, there was no benefit associated with conversion with regard to improvement in renal function and a greater incidence of proteinuria in the Rapamune conversion arm.

Overall in this study, a 5-fold increase in the reports of tuberculosis among sirolimus 2.0% (11/551) and comparator 0.4% (1/273) treatment groups was observed with 2:1 randomization scheme.

In a second study evaluating the safety and efficacy of conversion from tacrolimus to Rapamune 3 to 5 months post-kidney transplant, a higher rate of adverse events, discontinuations due to adverse events, acute rejection, and new onset diabetes mellitus was observed following conversion to Rapamune. There was also no benefit with respect to renal function and a greater incidence of proteinuria was observed after conversion to sirolimus [see Clinical Studies (14.4)].

6.5 Pediatric Renal Transplant Patients

Safety was assessed in a controlled clinical trial in pediatric (<18 years of age) renal transplant patients considered at high-immunologic risk, defined as a history of one or more acute allograft rejection episodes and/or the presence of chronic allograft nephropathy on a renal biopsy [see Clinical Studies (14.6)]. The use of Rapamune in combination with calcineurin inhibitors and corticosteroids was associated with a higher incidence of deterioration of renal function (creatinine increased) compared to calcineurin inhibitor-based therapy, serum lipid abnormalities (including, but not limited to, increased serum triglycerides and cholesterol), and urinary tract infections.

6.6 Patients with Lymphangioleiomyomatosis

Safety was assessed in a controlled trial involving 89 patients with lymphangioleiomyomatosis, 46 of whom were treated with Rapamune [see Clinical Studies (14.7)]. The adverse drug reactions observed in this trial were consistent with the known safety profile for renal transplant patients receiving Rapamune, with the addition of weight decreased which was reported at a greater incidence with Rapamune when compared to placebo. Adverse reactions occurring at a frequency of ≥20% in the Rapamune treatment group and greater than placebo include stomatitis, diarrhea, abdominal pain, nausea, nasopharyngitis, acne, chest pain, peripheral edema, upper respiratory tract infection, headache, dizziness, myalgia, and hypercholesterolemia.

6.7 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of Rapamune in transplant patients. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

  • Body as a Whole – Lymphedema.
  • Cardiovascular – Pericardial effusion (including hemodynamically significant effusions and tamponade requiring intervention in children and adults) and fluid accumulation.
  • Digestive System – Ascites.
  • Hematological/Lymphatic – Pancytopenia, neutropenia.
  • Hepatobiliary Disorders – Hepatotoxicity, including fatal hepatic necrosis, with elevated sirolimus trough concentrations.
  • Immune System – Hypersensitivity reactions, including anaphylactic/anaphylactoid reactions, angioedema, and hypersensitivity vasculitis [see Warnings and Precautions (5.4)].
  • Infections – Tuberculosis. BK virus associated nephropathy has been observed in patients receiving immunosuppressants, including Rapamune. This infection may be associated with serious outcomes, including deteriorating renal function and renal graft loss. Cases of progressive multifocal leukoencephalopathy (PML), sometimes fatal, have been reported in patients treated with immunosuppressants, including Rapamune [see Warnings and Precautions (5.10)]. Clostridium difficile enterocolitis.
  • Metabolic/Nutritional – Liver function test abnormal, AST/SGOT increased, ALT/SGPT increased, hypophosphatemia, hyperglycemia, diabetes mellitus.
  • Nervous system - Posterior reversible encephalopathy syndrome.
  • Respiratory – Cases of interstitial lung disease (including pneumonitis, bronchiolitis obliterans organizing pneumonia [BOOP], and pulmonary fibrosis), some fatal, with no identified infectious etiology have occurred in patients receiving immunosuppressive regimens including Rapamune. In some cases, the interstitial lung disease has resolved upon discontinuation or dose reduction of Rapamune. The risk may be increased as the sirolimus trough concentration increases [see Warnings and Precautions (5.11)]; pulmonary hemorrhage; pleural effusion; alveolar proteinosis.
  • Skin – Neuroendocrine carcinoma of the skin (Merkel cell carcinoma) [see Warnings and Precautions (5.18)], exfoliative dermatitis [see Warnings and Precautions (5.4)].
  • Urogenital – Nephrotic syndrome, proteinuria, focal segmental glomerulosclerosis, ovarian cysts, menstrual disorders (including amenorrhea and menorrhagia). Azoospermia has been reported with the use of Rapamune and has been reversible upon discontinuation of Rapamune in most cases.
Did you find an answer to your question? Yes No
Didn’t find what you were looking for? Contact us.
Report Adverse Event