Medical Information
 

In order to provide you with relevant and meaningful content we need to know more about you.

Please choose the category that best describes you.

This content is intended for U.S. Healthcare Professionals. Would you like to proceed?

If you provide additional keywords, you may be able to browse through our database of Scientific Response Documents.

Our scientific content is evidence-based, scientifically balanced and non-promotional. It undergoes rigorous internal medical review and is updated regularly to reflect new information.

KETAMINE Clinical Pharmacology (ketamine hydrochloride injection, USP)

CLINICAL PHARMACOLOGY

Ketamine is a rapid-acting general anesthetic producing an anesthetic state characterized by profound analgesia, normal pharyngeal-laryngeal reflexes, normal or slightly enhanced skeletal muscle tone, cardiovascular and respiratory stimulation, and occasionally a transient and minimal respiratory depression. The mechanism of action is primarily due to antagonism of N-methyl-D-aspartate (NMDA receptors) in the central nervous system (CNS).

A patent airway is maintained partly by virtue of unimpaired pharyngeal and laryngeal reflexes. (See WARNINGS and PRECAUTIONS Sections).

The biotransformation of ketamine includes N-dealkylation (metabolite I), hydroxylation of the cyclohexone ring (metabolites III and IV), conjugation with glucuronic acid and dehydration of the hydroxylated metabolites to form the cyclohexene derivative (metabolite II).

Following intravenous administration, the ketamine concentration has an initial slope (alpha phase) lasting about 45 minutes with a half-life of 10 to 15 minutes. This first phase corresponds clinically to the anesthetic effect of the drug. The anesthetic action is terminated by a combination of redistribution from the CNS to slower equilibrating peripheral tissues and by hepatic biotransformation to metabolite I. This metabolite is about 1/3 as active as ketamine in reducing halothane requirements (MAC) of the rat. The later half-life of ketamine (beta phase) is 2.5 hours.

The anesthetic state produced by ketamine has been termed "dissociative anesthesia" in that it appears to selectively interrupt association pathways of the brain before producing somatesthetic sensory blockade. It may selectively depress the thalamoneocortical system before significantly obtunding the more ancient cerebral centers and pathways (reticular-activating and limbic systems).

Elevation of blood pressure begins shortly after injection, reaches a maximum within a few minutes and usually returns to preanesthetic values within 15 minutes after injection. In the majority of cases, the systolic and diastolic blood pressure peaks from 10% to 50% above preanesthetic levels shortly after induction of anesthesia, but the elevation can be higher or longer in individual cases (see CONTRAINDICATIONS Section).

Ketamine has a wide margin of safety; several instances of unintentional administration of overdoses of ketamine (up to ten times that usually required) have been followed by prolonged but complete recovery.

Ketamine has been studied in over 12,000 operative and diagnostic procedures, involving over 10,000 patients from 105 separate studies. During the course of these studies ketamine hydrochloride was administered as the sole agent, as induction for other general agents, or to supplement low-potency agents.

Specific areas of application have included the following:

  1. debridement, painful dressings, and skin grafting in burn patients, as well as other superficial surgical procedures.
  2. neurodiagnostic procedures such as pneumonencephalograms, ventriculograms, myelograms, and lumbar punctures. See also Precaution concerning increased intracranial pressure.
  3. diagnostic and operative procedures of the eye, ear, nose, and mouth, including dental extractions.
  4. diagnostic and operative procedures of the pharynx, larynx, or bronchial tree. NOTE: Muscle relaxants, with proper attention to respiration, may be required (see PRECAUTIONS Section).
  5. sigmoidoscopy and minor surgery of the anus and rectum, and circumcision.
  6. extraperitoneal procedures used in gynecology such as dilatation and curettage.
  7. orthopedic procedures such as closed reductions, manipulations, femoral pinning, amputations, and biopsies.
  8. as an anesthetic in poor-risk patients with depression of vital functions.
  9. in procedures where the intramuscular route of administration is preferred.
  10. in cardiac catheterization procedures.

In these studies, the anesthesia was rated either "excellent" or "good" by the anesthesiologist and the surgeon at 90% and 93%, respectively; rated "fair" at 6% and 4%, respectively; and rated "poor" at 4% and 3%, respectively. In a second method of evaluation, the anesthesia was rated "adequate" in at least 90%, and "inadequate" in 10% or less of the procedures.

Did you find an answer to your question? Yes No
Did you find an answer to your question? Yes No
Didn’t find what you were looking for? Contact us.

*Contact Medical Information. 9AM-5PM ET Monday to Friday; excluding holidays.

*9AM-5PM ET Monday to Friday; excluding holidays.

Submit a medical question for Pfizer prescription products.

Report Adverse Event

Contact Pfizer Safety to report an adverse event, side effect or concern about the quality of a Pfizer product: (800) 438-1985

You may also contact the U.S. Food and Drug Administration (FDA) directly to report adverse events or product quality concerns at 1-800-FDA-1088 or www.fda.gov/MedWatch