Sorry, you need to enable JavaScript to visit this website.

ALDACTONE® (spironolactone) Clinical Pharmacology

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Spironolactone and its active metabolites are specific pharmacologic antagonists of aldosterone, acting primarily through competitive binding of receptors at the aldosterone-dependent sodium-potassium exchange site in the distal convoluted renal tubule. Spironolactone causes increased amounts of sodium and water to be excreted, while potassium is retained. Spironolactone acts both as a diuretic and as an antihypertensive drug by this mechanism. It may be given alone or with other diuretic agents that act more proximally in the renal tubule.

12.2 Pharmacodynamics

Aldosterone antagonist activity: Increased levels of the mineralocorticoid, aldosterone, are present in primary and secondary hyperaldosteronism. Edematous states in which secondary aldosteronism is usually involved include congestive heart failure, hepatic cirrhosis, and nephrotic syndrome. By competing with aldosterone for receptor sites, spironolactone provides effective therapy for the edema and ascites in those conditions. Spironolactone counteracts secondary aldosteronism induced by the volume depletion and associated sodium loss caused by active diuretic therapy.

12.3 Pharmacokinetics

Absorption

The mean time to reach peak plasma concentration of spironolactone and the active metabolite, canrenone, in healthy volunteers is 2.6 and 4.3 hours, respectively.

Effect of food: Food increased the bioavailability of spironolactone (as measured by AUC) by approximately 95.4%. Patients should establish a routine pattern for taking ALDACTONE with regard to meals [see Dosage and Administration (2.1)].

Distribution

Spironolactone and its metabolites are more than 90% bound to plasma proteins.

Elimination

The mean half-life of spironolactone is 1.4 hour.The mean half-life values of its metabolites including canrenone, 7-α-(thiomethyl) spirolactone (TMS), and 6-β-hydroxy-7-α-(thiomethyl) spirolactone (HTMS) are 16.5, 13.8, and 15 hours, respectively.

Metabolism: Spironolactone is rapidly and extensively metabolized. Metabolites can be divided into two main categories: those in which sulfur of the parent molecule is removed (e.g., canrenone) and those in which the sulfur is retained (e.g., TMS and HTMS). In humans, the potencies of TMS and 7-α-thiospirolactone in reversing the effects of the synthetic mineralocorticoid, fludrocortisone, on urinary electrolyte composition were approximately a third relative to spironolactone. However, since the serum concentrations of these steroids were not determined, their incomplete absorption and/or first-pass metabolism could not be ruled out as a reason for their reduced in vivo activities.

Excretion: The metabolites are excreted primarily in the urine and secondarily in bile.

Specific Populations

The impact of age, sex, race/ethnicity, and renal impairment on the pharmacokinetics of spironolactone have not been specifically studied.

Patients with Hepatic Impairment: The terminal half-life of spironolactone has been reported to be increased in patients with cirrhotic ascites [see Use in Specific Populations (8.7)].

Drug Interaction Studies:

Drugs and Supplements Increasing Serum Potassium: Concomitant administration of ALDACTONE with potassium supplementation, salt substitutes containing potassium, a diet rich in potassium, or drugs that can increase potassium, including ACE inhibitors, angiotensin II antagonists, non-steroidal anti-inflammatory drugs (NSAIDs), heparin and low molecular weight heparin, may lead to severe hyperkalemia [see Warnings and Precautions (5.1)and Drug Interactions (7.1)].

Lithium: ALDACTONE reduces the renal clearance of lithium, inducing a high risk of lithium toxicity [see Drug Interactions (7.2)].

Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): In some patients, the administration of an NSAID can reduce the diuretic, natriuretic, and antihypertensive effect of loop, potassium-sparing, and thiazide diuretics [see Drug Interactions (7.3)].

Acetylsalicylic acid: A single dose of 600 mg of acetylsalicylic acid inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone [see Drug Interactions (7.6)].

What's New

No Current Announcements.

Therapeutic Area

Contact Pfizer Medical

Report an Adverse Event
1-800-438-1985

Contact Pfizer

Need to report an Adverse Event, Side Effect or Product Quality Concern?

Contact Pfizer Safety to report an adverse event, side effect or concern about the quality of a Pfizer product: (800) 438-1985

You may also contact the U.S. Food and Drug Administration (FDA) directly to report adverse events or product quality concerns at 1-800-FDA-1088 or www.fda.gov/MedWatch

Have a Medical Question on a Pfizer Prescription Medicine?
Contact Pfizer Medical Information to speak with a professional regarding your medical question on a Pfizer prescription product: (800) 438-1985
Have a Question on a Pfizer Over-the-Counter Product?
For Pfizer Consumer Healthcare non-prescription or over-the-counter products such as Advil, Centrum, Nexium or Thermacare, call (800) 322-3129
Have a Question about Pfizer Clinical Trials?
If you are looking for information about Pfizer studies currently recruiting new patients in your area, you can begin your search on our website. For questions about a Pfizer Clinical Trial, call (800) 718-1021 or email [email protected]
Need Information on Pfizer’s Patient Assistance Programs?

Pfizer RxPathways® connects eligible patients, regardless of their insurance status, to a range of assistance programs that offer insurance support, co-pay help, and medicines for free or at a savings. For more information, please call (844) 989-7284 or visit www.PfizerRxPathways.com.

Eligible patients can register for valuable savings offers for nearly 40 brand name medications. Visit www.MyPfizerBrands.com for more information.