Theophylline should be used with extreme caution in patients with the following clinical conditions due to the increased risk of exacerbation of the concurrent condition:
Active peptic ulcer disease
Seizure disorders
Cardiac arrhythmias (not including bradyarrhythmias)
There are several readily identifiable causes of reduced theophylline clearance. If the infusion rate is not appropriately reduced in the presence of these risk factors, severe and potentially fatal theophylline toxicity can occur. Careful consideration must be given to the benefits and risks of theophylline use and the need for more intensive monitoring of serum theophylline concentrations in patients with the following risk factors:
Age
Neonates (term and premature)
Children <1 year
Elderly (>60 years)
Concurrent Diseases
Acute pulmonary edema
Congestive heart failure
Cor pulmonale
Fever; ≥102° for 24 hours or more; or lesser temperature
elevations for longer periods
Hypothyroidism
Liver disease; cirrhosis, acute hepatitis
Reduced renal function in infants <3 months of age
Sepsis with multi-organ failure
Shock
Cessation of Smoking
Drug Interactions
Adding a drug that inhibits theophylline metabolism (e.g., cimetidine, erythromycin, tacrine) or stopping a concurrently administered drug that enhances theophylline metabolism (e.g., carbamazepine, rifampin) (see PRECAUTIONS, Drug Interactions, Table II).
When Signs or Symptoms of Theophylline Toxicity Are Present:
Whenever a patient receiving theophylline develops nausea or vomiting, particularly repetitive vomiting, or other signs or symptoms consistent with theophylline toxicity (even if another cause may be suspected), the intravenous infusion should be stopped and a serum theophylline concentration measured immediately.
Increases in the dose of intravenous theophylline should not be made in response to an acute exacerbation of symptoms unless the steady-state serum theophylline concentration is <10 mcg/mL.
As the rate of theophylline clearance may be dose-dependent (i.e., steady-state serum concentrations may increase disproportionately to the increase in dose), an increase in dose based upon a sub-therapeutic serum concentration measurement should be conservative. In general, limiting infusion rate increases to about 25% of the previous infusion rate will reduce the risk of unintended excessive increases in serum theophylline concentration (see DOSAGE AND ADMINISTRATION, TABLE VI).
Careful consideration of the various interacting drugs and physiologic conditions that can alter theophylline clearance and require dosage adjustment should occur prior to initiation of theophylline therapy and prior to increases in theophylline dose (see WARNINGS).
Monitoring Serum Theophylline Concentrations:
Serum theophylline concentration measurements are readily available and should be used to determine whether the dosage is appropriate. Specifically, the serum theophylline concentration should be measured as follows:
In patients who have received no theophylline in the previous 24 hours, a serum concentration should be measured 30 minutes after completion of the intravenous loading dose to determine whether the serum concentration is <10 mcg/mL indicating the need for an additional loading dose or >20 mcg/mL indicating the need to delay starting the constant intravenous infusion. Once the infusion is begun, a second measurement should be obtained after one expected half-life (e.g., approximately 4 hours in children 1 to 9 years and 8 hours in non-smoking adults; see Table I for the expected half-life in additional patient populations). The second measurement should be compared to the first to determine the direction in which the serum concentration has changed. The infusion rate can then be adjusted before steady state is reached in an attempt to prevent an excessive or sub-therapeutic theophylline concentration from being achieved.
If a patient has received theophylline in the previous 24 hours, the serum concentration should be measured before administering an intravenous loading dose to make sure that it is safe to do so. If a loading dose is not indicated (i.e., the serum theophylline concentration is ≥10 mcg/mL), a second measurement should be obtained as above at the appropriate time after starting the intravenous infusion. If, on the other hand, a loading dose is indicated (see DOSAGE AND ADMINISTRATION for guidance on selection of the appropriate loading dose), a second blood sample should be obtained after the loading dose and a third sample should be obtained one expected half-life after starting the constant infusion to determine the direction in which the serum concentration has changed.
Once the above procedures related to initiation of intravenous theophylline infusion have been completed, subsequent serum samples for determination of theophylline concentration should be obtained at 24-hour intervals for the duration of the infusion. The theophylline infusion rate should be increased or decreased as appropriate based on the serum theophylline levels.
When signs or symptoms of theophylline toxicity are present, the intravenous infusion should be stopped and a serum sample for theophylline concentration should be obtained as soon as possible, analyzed immediately, and the result reported to the clinician without delay. In patients in whom decreased serum protein binding is suspected (e.g., cirrhosis, women during the third trimester of pregnancy), the concentration of unbound theophylline should be measured and the dosage adjusted to achieve an unbound concentration of 6-12 mcg/mL.
Saliva concentrations of theophylline cannot be used reliably to adjust dosage without special techniques.
As a result of its pharmacological effects, theophylline at serum concentrations within the 10 - 20 mcg/mL range modestly increases plasma glucose (from a mean of 88 mg% to 98 mg%), uric acid (from a mean of 4 mg/dl to 6 mg/dl), free fatty acids (from a mean of 451 µEq/L to 800 µEq/L), total cholesterol (from a mean of 140 vs 160 mg/dl), HDL (from a mean of 36 to 50 mg/dl), HDL/LDL ratio (from a mean of 0.5 to 0.7), and urinary free cortisol excretion (from a mean of 44 to 63 mcg/24 hr). Theophylline at serum concentrations within the 10 - 20 mcg/mL range may also transiently decrease serum concentrations of triiodothyronine (144 before, 131 after one week and 142 ng/dl after 4 weeks of theophylline). The clinical importance of these changes should be weighed against the potential therapeutic benefit of theophylline in individual patients.
Theophylline interacts with a wide variety of drugs. The interaction may be pharmacodynamic, i.e., alterations in the therapeutic response to theophylline or another drug or occurrence of adverse effects without a change in serum theophylline concentration. More frequently, however, the interaction is pharmacokinetic, i.e., the rate of theophylline clearance is altered by another drug resulting in increased or decreased serum theophylline concentrations. Theophylline only rarely alters the pharmacokinetics of other drugs.
The drugs listed in Table II have the potential to produce clinically significant pharmacodynamic or pharmacokinetic interactions with theophylline. The information in the "Effect" column of Table II assumes that the interacting drug is being added to a steady-state theophylline regimen. If theophylline is being initiated in a patient who is already taking a drug that inhibits theophylline clearance (e.g., cimetidine, erythromycin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be smaller. Conversely, if theophylline is being initiated in a patient who is already taking a drug that enhances theophylline clearance (e.g., rifampin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be larger. Discontinuation of a concomitant drug that increases theophylline clearance will result in accumulation of theophylline to potentially toxic levels, unless the theophylline dose is appropriately reduced. Discontinuation of a concomitant drug that inhibits theophylline clearance will result in decreased serum theophylline concentrations, unless the theophylline dose is appropriately increased.
The drugs listed in Table III have either been documented not to interact with theophylline or do not produce a clinically significant interaction (i.e., <15% change in theophylline clearance).
The listing of drugs in Tables II and III are current as of September 1, 1995. New interactions are continuously being reported for theophylline, especially with new chemical entities. The clinician should not assume that a drug does not interact with theophylline if it is not listed in Table II. Before addition of a newly available drug in a patient receiving theophylline, the package insert of the new drug and/or the medical literature should be consulted to determine if an interaction between the new drug and theophylline has been reported.
Drug | Type Of Interaction | Effect** |
---|---|---|
* Refer to PRECAUTIONS, Drug Interactions for further information regarding table. ** Average effect on steady-state theophylline concentration or other clinical effect for pharmacologic interactions. Individual patients may experience larger changes in serum theophylline concentration than the value listed. | ||
Adenosine | Theophylline blocks adenosine receptors. | Higher doses of adenosine may be required to achieve desired effect. |
Alcohol | A single large dose of alcohol (3 mL/kg of whiskey) decreases theophylline clearance for up to 24 hours. | 30% increase |
Allopurinol | Decreases theophylline clearance at allopurinol doses ≥600 mg/day. | 25% increase |
Aminoglutethimide | Increases theophylline clearance by induction of microsomal enzyme activity. | 25% decrease |
Carbamazepine | Similar to aminoglutethimide. | 30% decrease |
Cimetidine | Decreases theophylline clearance by inhibiting cytochrome P450 1A2. | 70% increase |
Ciprofloxacin | Similar to cimetidine. | 40% increase |
Clarithromycin | Similar to erythromycin. | 25% increase |
Diazepam | Benzodiazepines increase CNS concentrations of adenosine, a potent CNS depressant, while theophylline blocks adenosine receptors. | Larger diazepam doses may be required to produce desired level of sedation. Discontinuation of theophylline without reduction of diazepam dose may result in respiratory depression. |
Disulfiram | Decreases theophylline clearance by inhibiting hydroxylation and demethylation. | 50% increase |
Enoxacin | Similar to cimetidine. | 300% increase |
Ephedrine | Synergistic CNS effects. | Increased frequency of nausea, nervousness, and insomnia. |
Erythromycin | Erythromycin metabolite decreases theophylline clearance by inhibiting cytochrome P450 3A3. | 35% increase. Erythromycin steady-state serum concentrations decrease by a similar amount. |
Estrogen | Estrogen containing oral contraceptives decrease theophylline clearance in a dose-dependent fashion. The effect of progesterone on theophylline clearance is unknown. | 30% increase |
Flurazepam | Similar to diazepam. | Similar to diazepam. |
Fluvoxamine | Similar to cimetidine. | Similar to cimetidine. |
Halothane | Halothane sensitizes the myocardium to catecholamines, theophylline increases release of endogenous catecholamines. | Increased risk of ventricular arrhythmias. |
Interferon, human recombinant alpha-A | Decreases theophylline clearance. | 100% increase |
Isoproterenol (I.V.) | Increases theophylline clearance. | 20% decrease |
Ketamine | Pharmacologic | May lower theophylline seizure threshold. |
Lithium | Theophylline increases renal lithium clearance. | Lithium dose required to achieve a therapeutic serum concentration increased an average of 60%. |
Lorazepam | Similar to diazepam. | Similar to diazepam. |
Methotrexate (MTX) | Decreases theophylline clearance. | 20% increase after low dose MTX, higher dose MTX may have a greater effect. |
Mexiletine | Similar to disulfiram. | 80% increase |
Midazolam | Similar to diazepam. | Similar to diazepam. |
Moricizine | Increases theophylline clearance. | 25% decrease |
Pancuronium | Theophylline may antagonize nondepolarizing neuromuscular blocking effects; possibly due to phosphodiesterase inhibition. | Larger dose of pancuronium may be required to achieve neuromuscular blockade. |
Pentoxifylline | Decreases theophylline clearance. | 30% increase |
Phenobarbital (PB) | Similar to aminoglutethimide. | 25% decrease after two weeks of concurrent Phenobarbital. |
Phenytoin | Phenytoin increases theophylline clearance by increasing microsomal enzyme activity. Theophylline decreases phenytoin absorption. | Serum theophylline and phenytoin concentrations decrease about 40%. |
Propafenone | Decreases theophylline clearance and pharmacologic interaction. | 40% increase. Beta-2 blocking effect may decrease efficacy of theophylline. |
Propranolol | Similar to cimetidine and pharmacologic interaction. | 100% increase. Beta-2 blocking effect may decrease efficacy of theophylline. |
Rifampin | Increases theophylline clearance by increasing cytochrome P450 1A2 and 3A3 activity. | 20 - 40% decrease |
Sulfinpyrazone | Increases theophylline clearance by increasing demethylation and hydroxylation. Decreases renal clearance of theophylline. | 20% decrease |
Tacrine | Similar to cimetidine, also increases renal clearance of theophylline. | 90% increase |
Thiabendazole | Decreases theophylline clearance. | 190% increase |
Ticlopidine | Decreases theophylline clearance. | 60% increase |
Troleandomycin | Similar to erythromycin. | 33 - 100% increase depending on troleandomycin dose. |
Verapamil | Similar to disulfiram. | 20% increase |
| |
albuterol, systemic and inhaled amoxicillin ampicillin, with or without sulbactam atenolol azithromycin caffeine, dietary ingestion cefaclor co-trimoxazole (trimethoprim and sulfamethoxazole) diltiazem dirithromycin enflurane famotidine felodipine finasteride hydrocortisone isoflurane isoniazid isradipine influenza vaccine ketoconazole | lomefloxacin mebendazole medroxyprogesterone methylprednisolone metronidazole metoprolol nadolol nifedipine nizatidine norfloxacin ofloxacin omeprazole prednisone, prednisolone ranitidine rifabutin roxithromycin sorbitol (purgative doses do not inhibit theophylline absorption) sucralfate terbutaline, systemic terfenadine tetracycline tocainide |
The Effect of Other Drugs on Theophylline Serum Concentration Measurements:
Most serum theophylline assays in clinical use are immunoassays which are specific for theophylline. Other xanthines such as caffeine, dyphylline, and pentoxifylline are not detected by these assays. Some drugs (e.g., cefazolin, cephalothin), however, may interfere with certain HPLC techniques. Caffeine and xanthine metabolites in neonates or patients with renal dysfunction may cause the reading from some dry reagent office methods to be higher than the actual serum theophylline concentration.
Long term carcinogenicity studies have been carried out in mice (oral doses 30 - 150 mg/kg) and rats (oral doses 5 - 75 mg/kg). Results are pending.
Theophylline has been studied in Ames salmonella, in vivo and in vitro cytogenetics, micronucleus and Chinese hamster ovary test systems and has not been shown to be genotoxic.
In a 14 week continuous breeding study, theophylline, administered to mating pairs of B6C3F1 mice at oral doses of 120, 270 and 500 mg/kg (approximately 1.0 - 3.0 times the human dose on a mg/m2 basis) impaired fertility, as evidenced by decreases in the number of live pups per litter, decreases in the mean number of litters per fertile pair, and increases in the gestation period at the high dose as well as decreases in the proportion of pups born alive at the mid and high dose. In 13 week toxicity studies, theophylline was administered to F344 rats and B6C3F1 mice at oral doses of 40 - 300 mg/kg (approximately 2 times the human dose on a mg/m2 basis). At the high dose, systemic toxicity was observed in both species including decreases in testicular weight.
There are no adequate and well controlled studies in pregnant women. Additionally, there are no teratogenicity studies in nonrodents (e.g., rabbits). Theophylline was not shown to be teratogenic in CD-1 mice at oral doses up to 400 mg/kg, approximately 2.0 times the human dose on a mg/m2 basis or in CD-1 rats at oral doses up to 260 mg/kg, approximately 3.0 times the recommended human dose on a mg/m2 basis. At a dose of 220 mg/kg, embryotoxicity was observed in rats in the absence of maternal toxicity.
Theophylline is excreted into breast milk and may cause irritability or other signs of mild toxicity in nursing human infants. The concentration of theophylline in breast milk is about equivalent to the maternal serum concentration. An infant ingesting a liter of breast milk containing 10 - 20 mcg/mL of theophylline per day is likely to receive 10 - 20 mg of theophylline per day. Serious adverse effects in the infant are unlikely unless the mother has toxic serum theophylline concentrations.
Theophylline is safe and effective for the approved indications in pediatric patients (see INDICATIONS AND USAGE). The constant infusion rate of intravenous theophylline must be selected with caution in pediatric patients since the rate of theophylline clearance is highly variable across the age range of neonates to adolescents (see CLINICAL PHARMACOLOGY, Table I, WARNINGS, and DOSAGE AND ADMINISTRATION, Table V). Due to the immaturity of theophylline metabolic pathways in pediatric patients under the age of one year, particular attention to dosage selection and frequent monitoring of serum theophylline concentrations are required when theophylline is prescribed to pediatric patients in this age group.
Elderly patients are at significantly greater risk of experiencing serious toxicity from theophylline than younger patients due to pharmacokinetic and pharmacodynamic changes associated with aging. Theophylline clearance is reduced in patients greater than 60 years of age, resulting in increased serum theophylline concentrations in response to a given theophylline infusion rate. Protein binding may be decreased in the elderly resulting in a larger proportion of the total serum theophylline concentration in the pharmacologically active unbound form. Elderly patients also appear to be more sensitive to the toxic effects of theophylline after chronic overdosage than younger patients. For these reasons, the maximum infusion rate of theophylline in patients greater than 60 years of age ordinarily should not exceed 17 mg/hr (21 mg/hr as aminophylline) unless the patient continues to be symptomatic and the peak steady state serum theophylline concentration is <10 mcg/mL (see DOSAGE AND ADMINISTRATION). Theophylline infusion rates greater than 17 mg/hr (21 mg/hr as aminophylline) should be prescribed with caution in elderly patients.
Theophylline should be used with extreme caution in patients with the following clinical conditions due to the increased risk of exacerbation of the concurrent condition:
Active peptic ulcer disease
Seizure disorders
Cardiac arrhythmias (not including bradyarrhythmias)
There are several readily identifiable causes of reduced theophylline clearance. If the infusion rate is not appropriately reduced in the presence of these risk factors, severe and potentially fatal theophylline toxicity can occur. Careful consideration must be given to the benefits and risks of theophylline use and the need for more intensive monitoring of serum theophylline concentrations in patients with the following risk factors:
Age
Neonates (term and premature)
Children <1 year
Elderly (>60 years)
Concurrent Diseases
Acute pulmonary edema
Congestive heart failure
Cor pulmonale
Fever; ≥102° for 24 hours or more; or lesser temperature
elevations for longer periods
Hypothyroidism
Liver disease; cirrhosis, acute hepatitis
Reduced renal function in infants <3 months of age
Sepsis with multi-organ failure
Shock
Cessation of Smoking
Drug Interactions
Adding a drug that inhibits theophylline metabolism (e.g., cimetidine, erythromycin, tacrine) or stopping a concurrently administered drug that enhances theophylline metabolism (e.g., carbamazepine, rifampin) (see PRECAUTIONS, Drug Interactions, Table II).
When Signs or Symptoms of Theophylline Toxicity Are Present:
Whenever a patient receiving theophylline develops nausea or vomiting, particularly repetitive vomiting, or other signs or symptoms consistent with theophylline toxicity (even if another cause may be suspected), the intravenous infusion should be stopped and a serum theophylline concentration measured immediately.
Increases in the dose of intravenous theophylline should not be made in response to an acute exacerbation of symptoms unless the steady-state serum theophylline concentration is <10 mcg/mL.
As the rate of theophylline clearance may be dose-dependent (i.e., steady-state serum concentrations may increase disproportionately to the increase in dose), an increase in dose based upon a sub-therapeutic serum concentration measurement should be conservative. In general, limiting infusion rate increases to about 25% of the previous infusion rate will reduce the risk of unintended excessive increases in serum theophylline concentration (see DOSAGE AND ADMINISTRATION, TABLE VI).
Careful consideration of the various interacting drugs and physiologic conditions that can alter theophylline clearance and require dosage adjustment should occur prior to initiation of theophylline therapy and prior to increases in theophylline dose (see WARNINGS).
Monitoring Serum Theophylline Concentrations:
Serum theophylline concentration measurements are readily available and should be used to determine whether the dosage is appropriate. Specifically, the serum theophylline concentration should be measured as follows:
In patients who have received no theophylline in the previous 24 hours, a serum concentration should be measured 30 minutes after completion of the intravenous loading dose to determine whether the serum concentration is <10 mcg/mL indicating the need for an additional loading dose or >20 mcg/mL indicating the need to delay starting the constant intravenous infusion. Once the infusion is begun, a second measurement should be obtained after one expected half-life (e.g., approximately 4 hours in children 1 to 9 years and 8 hours in non-smoking adults; see Table I for the expected half-life in additional patient populations). The second measurement should be compared to the first to determine the direction in which the serum concentration has changed. The infusion rate can then be adjusted before steady state is reached in an attempt to prevent an excessive or sub-therapeutic theophylline concentration from being achieved.
If a patient has received theophylline in the previous 24 hours, the serum concentration should be measured before administering an intravenous loading dose to make sure that it is safe to do so. If a loading dose is not indicated (i.e., the serum theophylline concentration is ≥10 mcg/mL), a second measurement should be obtained as above at the appropriate time after starting the intravenous infusion. If, on the other hand, a loading dose is indicated (see DOSAGE AND ADMINISTRATION for guidance on selection of the appropriate loading dose), a second blood sample should be obtained after the loading dose and a third sample should be obtained one expected half-life after starting the constant infusion to determine the direction in which the serum concentration has changed.
Once the above procedures related to initiation of intravenous theophylline infusion have been completed, subsequent serum samples for determination of theophylline concentration should be obtained at 24-hour intervals for the duration of the infusion. The theophylline infusion rate should be increased or decreased as appropriate based on the serum theophylline levels.
When signs or symptoms of theophylline toxicity are present, the intravenous infusion should be stopped and a serum sample for theophylline concentration should be obtained as soon as possible, analyzed immediately, and the result reported to the clinician without delay. In patients in whom decreased serum protein binding is suspected (e.g., cirrhosis, women during the third trimester of pregnancy), the concentration of unbound theophylline should be measured and the dosage adjusted to achieve an unbound concentration of 6-12 mcg/mL.
Saliva concentrations of theophylline cannot be used reliably to adjust dosage without special techniques.
As a result of its pharmacological effects, theophylline at serum concentrations within the 10 - 20 mcg/mL range modestly increases plasma glucose (from a mean of 88 mg% to 98 mg%), uric acid (from a mean of 4 mg/dl to 6 mg/dl), free fatty acids (from a mean of 451 µEq/L to 800 µEq/L), total cholesterol (from a mean of 140 vs 160 mg/dl), HDL (from a mean of 36 to 50 mg/dl), HDL/LDL ratio (from a mean of 0.5 to 0.7), and urinary free cortisol excretion (from a mean of 44 to 63 mcg/24 hr). Theophylline at serum concentrations within the 10 - 20 mcg/mL range may also transiently decrease serum concentrations of triiodothyronine (144 before, 131 after one week and 142 ng/dl after 4 weeks of theophylline). The clinical importance of these changes should be weighed against the potential therapeutic benefit of theophylline in individual patients.
Theophylline interacts with a wide variety of drugs. The interaction may be pharmacodynamic, i.e., alterations in the therapeutic response to theophylline or another drug or occurrence of adverse effects without a change in serum theophylline concentration. More frequently, however, the interaction is pharmacokinetic, i.e., the rate of theophylline clearance is altered by another drug resulting in increased or decreased serum theophylline concentrations. Theophylline only rarely alters the pharmacokinetics of other drugs.
The drugs listed in Table II have the potential to produce clinically significant pharmacodynamic or pharmacokinetic interactions with theophylline. The information in the "Effect" column of Table II assumes that the interacting drug is being added to a steady-state theophylline regimen. If theophylline is being initiated in a patient who is already taking a drug that inhibits theophylline clearance (e.g., cimetidine, erythromycin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be smaller. Conversely, if theophylline is being initiated in a patient who is already taking a drug that enhances theophylline clearance (e.g., rifampin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be larger. Discontinuation of a concomitant drug that increases theophylline clearance will result in accumulation of theophylline to potentially toxic levels, unless the theophylline dose is appropriately reduced. Discontinuation of a concomitant drug that inhibits theophylline clearance will result in decreased serum theophylline concentrations, unless the theophylline dose is appropriately increased.
The drugs listed in Table III have either been documented not to interact with theophylline or do not produce a clinically significant interaction (i.e., <15% change in theophylline clearance).
The listing of drugs in Tables II and III are current as of September 1, 1995. New interactions are continuously being reported for theophylline, especially with new chemical entities. The clinician should not assume that a drug does not interact with theophylline if it is not listed in Table II. Before addition of a newly available drug in a patient receiving theophylline, the package insert of the new drug and/or the medical literature should be consulted to determine if an interaction between the new drug and theophylline has been reported.
Drug | Type Of Interaction | Effect** |
---|---|---|
* Refer to PRECAUTIONS, Drug Interactions for further information regarding table. ** Average effect on steady-state theophylline concentration or other clinical effect for pharmacologic interactions. Individual patients may experience larger changes in serum theophylline concentration than the value listed. | ||
Adenosine | Theophylline blocks adenosine receptors. | Higher doses of adenosine may be required to achieve desired effect. |
Alcohol | A single large dose of alcohol (3 mL/kg of whiskey) decreases theophylline clearance for up to 24 hours. | 30% increase |
Allopurinol | Decreases theophylline clearance at allopurinol doses ≥600 mg/day. | 25% increase |
Aminoglutethimide | Increases theophylline clearance by induction of microsomal enzyme activity. | 25% decrease |
Carbamazepine | Similar to aminoglutethimide. | 30% decrease |
Cimetidine | Decreases theophylline clearance by inhibiting cytochrome P450 1A2. | 70% increase |
Ciprofloxacin | Similar to cimetidine. | 40% increase |
Clarithromycin | Similar to erythromycin. | 25% increase |
Diazepam | Benzodiazepines increase CNS concentrations of adenosine, a potent CNS depressant, while theophylline blocks adenosine receptors. | Larger diazepam doses may be required to produce desired level of sedation. Discontinuation of theophylline without reduction of diazepam dose may result in respiratory depression. |
Disulfiram | Decreases theophylline clearance by inhibiting hydroxylation and demethylation. | 50% increase |
Enoxacin | Similar to cimetidine. | 300% increase |
Ephedrine | Synergistic CNS effects. | Increased frequency of nausea, nervousness, and insomnia. |
Erythromycin | Erythromycin metabolite decreases theophylline clearance by inhibiting cytochrome P450 3A3. | 35% increase. Erythromycin steady-state serum concentrations decrease by a similar amount. |
Estrogen | Estrogen containing oral contraceptives decrease theophylline clearance in a dose-dependent fashion. The effect of progesterone on theophylline clearance is unknown. | 30% increase |
Flurazepam | Similar to diazepam. | Similar to diazepam. |
Fluvoxamine | Similar to cimetidine. | Similar to cimetidine. |
Halothane | Halothane sensitizes the myocardium to catecholamines, theophylline increases release of endogenous catecholamines. | Increased risk of ventricular arrhythmias. |
Interferon, human recombinant alpha-A | Decreases theophylline clearance. | 100% increase |
Isoproterenol (I.V.) | Increases theophylline clearance. | 20% decrease |
Ketamine | Pharmacologic | May lower theophylline seizure threshold. |
Lithium | Theophylline increases renal lithium clearance. | Lithium dose required to achieve a therapeutic serum concentration increased an average of 60%. |
Lorazepam | Similar to diazepam. | Similar to diazepam. |
Methotrexate (MTX) | Decreases theophylline clearance. | 20% increase after low dose MTX, higher dose MTX may have a greater effect. |
Mexiletine | Similar to disulfiram. | 80% increase |
Midazolam | Similar to diazepam. | Similar to diazepam. |
Moricizine | Increases theophylline clearance. | 25% decrease |
Pancuronium | Theophylline may antagonize nondepolarizing neuromuscular blocking effects; possibly due to phosphodiesterase inhibition. | Larger dose of pancuronium may be required to achieve neuromuscular blockade. |
Pentoxifylline | Decreases theophylline clearance. | 30% increase |
Phenobarbital (PB) | Similar to aminoglutethimide. | 25% decrease after two weeks of concurrent Phenobarbital. |
Phenytoin | Phenytoin increases theophylline clearance by increasing microsomal enzyme activity. Theophylline decreases phenytoin absorption. | Serum theophylline and phenytoin concentrations decrease about 40%. |
Propafenone | Decreases theophylline clearance and pharmacologic interaction. | 40% increase. Beta-2 blocking effect may decrease efficacy of theophylline. |
Propranolol | Similar to cimetidine and pharmacologic interaction. | 100% increase. Beta-2 blocking effect may decrease efficacy of theophylline. |
Rifampin | Increases theophylline clearance by increasing cytochrome P450 1A2 and 3A3 activity. | 20 - 40% decrease |
Sulfinpyrazone | Increases theophylline clearance by increasing demethylation and hydroxylation. Decreases renal clearance of theophylline. | 20% decrease |
Tacrine | Similar to cimetidine, also increases renal clearance of theophylline. | 90% increase |
Thiabendazole | Decreases theophylline clearance. | 190% increase |
Ticlopidine | Decreases theophylline clearance. | 60% increase |
Troleandomycin | Similar to erythromycin. | 33 - 100% increase depending on troleandomycin dose. |
Verapamil | Similar to disulfiram. | 20% increase |
| |
albuterol, systemic and inhaled amoxicillin ampicillin, with or without sulbactam atenolol azithromycin caffeine, dietary ingestion cefaclor co-trimoxazole (trimethoprim and sulfamethoxazole) diltiazem dirithromycin enflurane famotidine felodipine finasteride hydrocortisone isoflurane isoniazid isradipine influenza vaccine ketoconazole | lomefloxacin mebendazole medroxyprogesterone methylprednisolone metronidazole metoprolol nadolol nifedipine nizatidine norfloxacin ofloxacin omeprazole prednisone, prednisolone ranitidine rifabutin roxithromycin sorbitol (purgative doses do not inhibit theophylline absorption) sucralfate terbutaline, systemic terfenadine tetracycline tocainide |
The Effect of Other Drugs on Theophylline Serum Concentration Measurements:
Most serum theophylline assays in clinical use are immunoassays which are specific for theophylline. Other xanthines such as caffeine, dyphylline, and pentoxifylline are not detected by these assays. Some drugs (e.g., cefazolin, cephalothin), however, may interfere with certain HPLC techniques. Caffeine and xanthine metabolites in neonates or patients with renal dysfunction may cause the reading from some dry reagent office methods to be higher than the actual serum theophylline concentration.
Long term carcinogenicity studies have been carried out in mice (oral doses 30 - 150 mg/kg) and rats (oral doses 5 - 75 mg/kg). Results are pending.
Theophylline has been studied in Ames salmonella, in vivo and in vitro cytogenetics, micronucleus and Chinese hamster ovary test systems and has not been shown to be genotoxic.
In a 14 week continuous breeding study, theophylline, administered to mating pairs of B6C3F1 mice at oral doses of 120, 270 and 500 mg/kg (approximately 1.0 - 3.0 times the human dose on a mg/m2 basis) impaired fertility, as evidenced by decreases in the number of live pups per litter, decreases in the mean number of litters per fertile pair, and increases in the gestation period at the high dose as well as decreases in the proportion of pups born alive at the mid and high dose. In 13 week toxicity studies, theophylline was administered to F344 rats and B6C3F1 mice at oral doses of 40 - 300 mg/kg (approximately 2 times the human dose on a mg/m2 basis). At the high dose, systemic toxicity was observed in both species including decreases in testicular weight.
There are no adequate and well controlled studies in pregnant women. Additionally, there are no teratogenicity studies in nonrodents (e.g., rabbits). Theophylline was not shown to be teratogenic in CD-1 mice at oral doses up to 400 mg/kg, approximately 2.0 times the human dose on a mg/m2 basis or in CD-1 rats at oral doses up to 260 mg/kg, approximately 3.0 times the recommended human dose on a mg/m2 basis. At a dose of 220 mg/kg, embryotoxicity was observed in rats in the absence of maternal toxicity.
Theophylline is excreted into breast milk and may cause irritability or other signs of mild toxicity in nursing human infants. The concentration of theophylline in breast milk is about equivalent to the maternal serum concentration. An infant ingesting a liter of breast milk containing 10 - 20 mcg/mL of theophylline per day is likely to receive 10 - 20 mg of theophylline per day. Serious adverse effects in the infant are unlikely unless the mother has toxic serum theophylline concentrations.
Theophylline is safe and effective for the approved indications in pediatric patients (see INDICATIONS AND USAGE). The constant infusion rate of intravenous theophylline must be selected with caution in pediatric patients since the rate of theophylline clearance is highly variable across the age range of neonates to adolescents (see CLINICAL PHARMACOLOGY, Table I, WARNINGS, and DOSAGE AND ADMINISTRATION, Table V). Due to the immaturity of theophylline metabolic pathways in pediatric patients under the age of one year, particular attention to dosage selection and frequent monitoring of serum theophylline concentrations are required when theophylline is prescribed to pediatric patients in this age group.
Elderly patients are at significantly greater risk of experiencing serious toxicity from theophylline than younger patients due to pharmacokinetic and pharmacodynamic changes associated with aging. Theophylline clearance is reduced in patients greater than 60 years of age, resulting in increased serum theophylline concentrations in response to a given theophylline infusion rate. Protein binding may be decreased in the elderly resulting in a larger proportion of the total serum theophylline concentration in the pharmacologically active unbound form. Elderly patients also appear to be more sensitive to the toxic effects of theophylline after chronic overdosage than younger patients. For these reasons, the maximum infusion rate of theophylline in patients greater than 60 years of age ordinarily should not exceed 17 mg/hr (21 mg/hr as aminophylline) unless the patient continues to be symptomatic and the peak steady state serum theophylline concentration is <10 mcg/mL (see DOSAGE AND ADMINISTRATION). Theophylline infusion rates greater than 17 mg/hr (21 mg/hr as aminophylline) should be prescribed with caution in elderly patients.
Chat online with Pfizer Medical Information regarding your inquiry on a Pfizer medicine.
*Speak with a Pfizer Medical Information Professional regarding your medical inquiry. Available 9AM-5PM ET Monday to Friday; excluding holidays.
Submit a medical question for Pfizer prescription products.
Pfizer Safety
To report an adverse event related to the Pfizer-BioNTech COVID-19 Vaccine, and you are not part of a clinical trial* for this product, click the link below to submit your information:
Pfizer Safety Reporting Site*If you are involved in a clinical trial for this product, adverse events should be reported to your coordinating study site.
If you cannot use the above website, or would like to report an adverse event related to a different Pfizer product, please call Pfizer Safety at (800) 438-1985.
FDA Medwatch
You may also contact the U.S. Food and Drug Administration (FDA) directly to report adverse events or product quality concerns either online at www.fda.gov/medwatch or call (800) 822-7967.